
Evolutionary Hardware-Aware
Neural Architecture Search

Lukáš Sekanina
Faculty of Information Technology

Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic

sekanina@fit.vutbr.cz

https://www.fit.vut.cz/person/sekanina

ScaDS.AI  January 18, 2023 Leipzig

Deep neural networks everywhere

2

1. What is the best NN model for a given task and hardware?

Images taken from Internet.

DATA SETS

2. What is the best NN model and HW configuration for a given task?

Hello -> Bonjour

Neural Network Design and Neural Architecture Search (NAS)

3

0.1

0.7

-0.2

0.6

0.8

0.0

Training data
Training

TRAINING
ACCURACY

architecture

weights

Conventional approach (phase I):
Human design and training

TEST
ACCURACY

0.1

0.7

-0.2

0.6

0.8

0.0

Test data

Latency,
Energy

HW/SW
implementation
(for Inference)

Conventional approach (phase II):
Validation and implementation

0.1

0.7

-0.2

0.6

0.8

0.0

TRAINING
ACCURACY

Training data
Training

TEST
ACCURACY

Test data

Neural Architecture Search

NAS

Estimate HW
parameters

HW/SW
implementation
(for Inference)

Hardware-Aware

is a multi-objective
design problem!

• Efficient processing of CNNs

• Hardware accelerators for CNNs

• Single-objective Neural Architecture Search (NAS)
– Search spaces and Search algorithms

– Performance predictors

– Classification of NAS methods

• Multi-objective Neural Architecture Search
– Hardware-aware NAS

– NAS with HW Co-design

– Classification of NAS methods

• Benchmarking of NAS methods

• EvoApproxNAS

• Conclusions

Outline

4

The number of papers on NAS according to
automl.org (January 13, 2023)

2 7 1
3 6

1

2
3

7

6
0

3 6
8

5

6
4

9

3
3

*

2015 2016 2017 2018 2019 2 0 2 0 2021 2022 2023

P
A

P
ER

S

This talk is mostly based on:

Sekanina L.: Neural Architecture Search and Hardware Accelerator Co-Search: A Survey. IEEE Access, Vol. 9, 2021

Sze V. et al. Efficient processing of deep neural networks, Morgan & Claypool, 2020

https://www.rle.mit.edu/eems/publications/tutorials/

Convolutional neural networks

5
Adopted from Sze et al. 2020

Normalizing

to (=0, =1).

Pooling

Fully Connected layer

The output layer has k such
neurons when classifying into
k classes. The softmax gives
the probability of i-th class:

Parameters of popular hand-crafted CNNs (ImageNet)

6

Linear structure
of AlexNet

Residual
block from
ResNet

Inception block
from GoogleNet

Rank Model
Top-1

Accuracy Parameters Year

1 ViT-G/14 91.78% 1843M 2022

2 ViTAE-H 91.20% 644M 2022

7 FixEfficientNet-L2 90.90% 480M 2020

12 CvT-W24 90.60% 277M 2021

13 EfficientNet-L2 90.55% 480M 2019

14 ViT-L/16 90.54% 307M 2020

15 BiT-L 90.54% 928M 2019

18 Mixer-H/14- 448 90.18% 409M 2021

19 FixEfficientNet-B8 90.00% 87M 2020

21 FixResNeXt-101 89.73% 829M 2019

22 DeiT-B-384 89.30% 86M 2020

29 NASNet-A Large 87.56% 2017

41 ResNet-152 84.79% 2015

45 ResNet-50 82.94% 25M 2015

paperswithcode.com, April 4, 2022

ViT - Vision
Transformers

Development of CNN-based image classifiers

7

https://arxiv.org/abs/2101.09336

ImageNet:
256x256 pixel images
1000 classes
1.2M training images
100k test images

Objective: Starting with a CNN model, develop its
implementation(s) showing best tradeoffs between
Accuracy and Latency/Energy/Memory Size for a
given hardware.

Selected approaches

• Structure refinement
– Optimized matrix multiplication, reducing the

number of MACs, …

– Compute reuse

• Data-oriented refinement
– Quantization

– Weight sharing

– Pruning

• Operator refinement
– Dedicated operators

– Approximate operators

Efficient processing of CNNs (for inference)

8

Memory Access is the Bottleneck

9
Adopted from Sze et al. 2020

Example:
No reuse: 2896M DRAM
accesses required for AlexNet
(724M MACs).

Input data reuse: 61M DRAM
accesses for AlexNet by exploiting
low-cost local memory ~ 500x
reduction

Quantization and bit widths

10
BFP – Block Floating Point

• What to quantize
– Inference: weights, activations, partial sums
– Training: weights, activations, partial sums, gradients, weight

update

• When
– quantization-aware training
– fine-tuning (training data required)
– post-training quantization without any fine tuning

• Where
– uniform (the entire NN)
– non-uniform (layer level, channel level, …)

• Data formats
– Floating point 8/16/32 bit; dynamic floating point
– Fixed point/integer 4/8/16 bit
– Binary and ternary {-c, 0, +c}, where c is a learnable parameter
– Log representation

• Choosing quantized values
– uniform
– non-uniform (powers of 2, heuristically determined)

• Typical bit widths
– 8 bit for inference (FX)
– 16 bit for training (FP)

Quantization and approximation in ResNet

11

C
IF

A
R

-1
0

C
IF

A
R

-1
0

0

TFApprox enables the use of approx. multipliers in TensorFlow (GPU)

Mrázek, Sekanina et al. JETCAS 2020https://github.com/ehw-fit/tf-approximate

*
10

15
150

Error = 0
Power = 100%
Latency = 100%

Standard 8-bit multiplier

*a

10

15
148

Worst Error = 5%
Power = 61%
Latency = 82%

Approximate 8-bit multiplier
(taken from EvoApproxLib)

Approximate multipliers in ResNet

• All exact 8-bit multiplications of all convolutional layers of different ResNet CNNs were replaced with one
approximate implementation. Repeated for 35 different approximate 8-bit multipliers (from EvoApproxLib)
to find Pareto fronts (Accuracy on CIFAR-10 vs. Energy).

*

+
8

N

8+N

1. Improved the
Accuracy-Energy
tradeoffs
2. Reduced size of
weight memory!

WEIGHT, N = {8, 7, 6, 5, 4}

Mrázek, Sekanina et al. JETCAS 2020

12

• Efficient processing of CNNs

• Hardware accelerators for CNNs

• Single-objective Neural Architecture Search (NAS)
– Search spaces and Search algorithms

– Performance predictors

– Classification of NAS methods

• Multi-objective Neural Architecture Search
– Hardware-aware NAS

– NAS with HW Co-design

– Classification of NAS methods

• Benchmarking of NAS methods

• Conclusions

Outline

13

Accelerators for Machine Learning

Reuther A. et al. arxiv.org/pdf/1908.11348.pdf

14

Performance: the number of inferences per second

Energy-efficiency: the number of inferences per Watt/s

Accelerators for inference processing

15

Unconventional platforms: in-memory computing, stochastic computing, memristive, RRAM, …

AlexNet on various platforms

Two types of DNN accelerators

16

Temporal Architecture

Adopted from Sze et al. 2020

CPU, GPU
(for training & inference)

ASIC, FPGA
(usually for inference only)

Spatial Architecture

Data flow strategy:
how reusing of
input data (weights
and activations)
and local partial
sums accumulation
is implemented.

Example of an ASIC accelerator: Eyeriss (MIT, v1 2016; v2 2019)

17Adopted from Sze et al. 2020

AlexNet

• Efficient processing of CNNs

• Hardware accelerators for CNNs

• Single-objective Neural Architecture Search (NAS)
– Search spaces and Search algorithms

– Performance predictors

– Classification of NAS methods

• Multi-objective Neural Architecture Search
– Hardware-aware NAS

– NAS with HW Co-design

– Classification of NAS methods

• Benchmarking of NAS methods

• Conclusions

Outline

18

Single-objective NAS

19

• The aim of NAS is to automate the process of
finding the most suitable NN architecture for
a given dataset. The single-objective NAS has
one objective - maximizing the Accuracy.

– Neuro-evolution has been performed in the
Evolutionary Algorithms community since the
mid-1980.

– NAS has been connected with DNNs since
2016.

• Key components of NAS methods
– Search space

– Search algorithm

– Performance estimation/evaluation

• Target hardware: usually GPU

Single-objective NAS (basic version)

Dtrn – training data

Dtst – test data

 – a candidate NN model

w – weights

Acc - Accuracy

Search Spaces and CNN encoding

20

Candidate CNN ~ string of integers
Search space ~ all feasible strings

Macro search space
- The entire CNN

is encoded.
- Some parts can

be fixed by the
designer.

Micro search space
- A subgraph (cell,
block) or subgraphs
is/are encoded and
reused.

Hierarchical search
space
- Recursive
construction using
a set of small
graphs.

Indirect encoding
- A construction

program is
encoded.

- The program is
executed to
build a NN.

(Node ID; Operation; Parameter; Source ID 1; Source ID 2).
Set of operations: (1) convolution, (2) max. pooling, (3)
average pooling, (4) identity, (5) add, (6) concatenation, (7)
terminal node [87].

Recent survey:

Vargas-Hákim G.A. et al. A Review on Convolutional Neural Network
Encodings for Neuroevolution. IEEE Tr. On Evol. Comp. 26(1), 2022

Search Algorithms: Reinforcement learning

21

A recurrent neuron (left) unrolled through time (right)

• The agent’s action is the generation of a CNN
architecture.

• The agent’s reward is the accuracy of CNN (obtained after
training and validation on the test set).

• The agent (controller) is typically implemented as a
recurrent neural network (RNN).

• The parameters of the RNN are optimized (using policy
gradients techniques such as REINFORCE) in order to
maximize the expected validation accuracy.

Agent
(controller, RNN)

Training and
validation of CNN

Action: Sample
CNN architecture
(5, 7, 15, 6, …)

Reward:
Accuracy (CNN)
+ Update RNN

Search Algorithms: Genetic Algorithm

22

Example: Zhichao Lu et al. NSGA-Net, GECCO 2019

Encoding: CNN is a set of phases; max. 6 nodes in each phase encoded using a bit string. A node can be convolution,
pooling, batch-normalization…

Search method:

NSGA-II (classification error vs the number of
FLOPs), crossover, bit flip mutation, Bayesian
Optimization Algorithm, population size = 40,
generations = 20+10, i.e. 1200 network
architectures are created in a single run

Training (during the evolution): SGD (Stochastic
Gradient Descent) for 25 epochs

Validation of evolved CNNs: 600 epochs, batch
size 96, data preprocessing, regularization …

Crossover:

Search Algorithms: Differentiable Neural Architecture Search

23

The weights w and continuous parameters 

representing the NN architecture are jointly optimized

by a gradient method.

Node x(i): Feature map

Edge o(i,j): Operation, e.g. Conv3, Conv5, AvgPool

DARTS reduced the search time 10x-500x on ImageNet.

1 discrete
variable for
3 options

3 continuous
variables i

the most
likely one
is selected

Comparison of single-objective NAS methods from 2018

24

H. Liu, K. Simonyan, and Y. Yang, ``DARTS: Differentiable architecture search,‘’ ICLR 2019

Mobile setting: up to 600 million MACs per inference

SMBO –
Sequential
Model Based
Optimization

• Idea: Each candidate CNN could be seen as a subnetwork of a larger network.

• A single large over-parameterized network (supernet) is constructed such that it contains every possible
operation in the search space.

• Once the supernet model is trained (which is very expensive!), it is used for evaluating the performance of
many different architectures (subnetworks) sampled by zeroing out or removing some operations.

• The expensive design of supernet is amortized by reusing it for different target scenarios (chips).

Supernet (one-shot network)

25

Each cell has choice blocks and each choice block can select up to 2
operations. Solid edges are used in every architecture, where dash lines
are optional (Bender et al 2018)

Selected single-objective NAS methods

26SMBO – Sequential Model Based Optimizationsee Sekanina L.: IEEE Access, 2021

• Efficient processing of CNNs

• Hardware accelerators for CNNs

• Single-objective Neural Architecture Search (NAS)
– Search spaces and Search algorithms

– Performance predictors

– Classification of NAS methods

• Multi-objective Neural Architecture Search
– Hardware-aware NAS

– NAS with HW Co-design

– Classification of NAS methods

• Benchmarking of NAS methods

• Conclusions

Outline

27

Multi-objective NAS for a particular (fixed) hardware

28

Additional
Objectives:

Latency

Area

Energy

RAM size

Flash size

#MAC

Reliability

etc.

Hardware-aware NAS is a NAS reflecting a
given hardware executing the inference.

Important: Hardware itself is not optimized!
There is no additional search space of
hardware configurations.

Benmeziane et al. 2021

Multi-objective NAS for a particular (fixed) hardware

29

ProxylessNAS optimizing Accuracy and Latency

Possibilities when solving a multi-objective
optimization problem with objective
functions f1 … fm:
1. Transform it into a single-objective

problem (using suitable constraints,
prioritization, or aggregation
techniques) and solve it with a common
single-objective method

2. Employ a truly multi-objective
approach, e.g. NSGA-II, that utilizes the
concept of Pareto dominance during the
search.

• Simplify the common
approach
– Employ a proxy data set

– Reduce the number of training
epochs

– Extrapolate the learning curve

– etc.

• Build a surrogate model –
Accuracy predictor
– NN

– regression trees

– Gaussian process (GP)

– etc.

• NAS needs only the rank of the
performance values

Shortening the evaluation time: Accuracy

30
Results on NASBench-101 (CIFAR-10) by Wen W. et al. ECCV 2020

Hardware metrics: Latency, Energy, Area, Memory etc.

Methods according to Benmeziane et al. 2021:

• Baseline: Real-time measurements on target hardware.

• Analytical Estimation - consists of analytical computing
a rough estimate, e.g., using the processing time, the
stall time, and the starting time.

• Prediction Model a ML model is built to predict the cost
using architecture and dataset features.

• Lookup Table Models

Shortening the evaluation time: Hardware metrics

31

#MAC is not a good proxy for latency! Shown
for various NN models on a Google Pixel phone.

Benmeziane et al. 2021

DNN-to-Accelerator Mapping and Energy estimation SW tools

32

• Timeloop [Parashar, ISPASS 2019]

– A tool searching for the most suitable mapping of DNN to
HW accelerator (several search methods implemented)

• Layer-wise data tiling reflecting the memory hierarchy of the
accelerator

– HW accelerator is described at the architecture level, incl.
data flow organization

– Performance Simulator -> Action counts

• Accelergy [Wu, ICCAD 2019]

– Early stage energy estimation tool at the architecture level

• Estimate energy consumption based on architecture level
components (e.g., # of PEs, memory size, on-chip network)

• Plug-ins for different technologies

480k different mappings of
VGG_conv3_2 to an
accelerator

Selected hardware-aware NAS methods

33Lat – Latency, Mem – RAM size; Flash – Flash size
see Sekanina L.: IEEE Access, 2021

NAS with HW Co-design: Three search spaces!

34

We can observe that the HW-aware NAS has a much

narrower search space than the proposed co-

exploration approach. Basically, HW-aware NAS

will prune the architectures that violates hardware

specifications on a fixed hardware design. However,

by opening the hardware design space, it is possible

to find a tailor-made hardware design for the pruned

architectures to make them meet the hardware

specifications. Therefore, compared with the HW-

aware NAS, the co-exploration approach enlarges

the search space. As a result, it can make better

tradeoffs between accuracy and hardware efficiency.

[Jiang et al. IEEE TCAD 2020]

Search Spaces

NN models

NN weights

HW
configurations

Search Algorithms

RL, EA, SMBO, gradient …

Gradient

EA, ILP, gradient, …
join with

Bit widths
Quantization
PE array size
Buffer size
MAC circuit configuration (approx. multipliers)
Dataflow organization
Tiling strategy
Loop order
Memory subsystem parameters
Preferences for the high-level synthesis SW
…

NAS with HW Co-design: selected approaches

35

One search algorithm

Sample CNN & HW configuration
Evaluate Accuracy & Obtain HW parameters
REPEAT until not satisfactory
Report the best CNN-HW pair

Too time-consuming!

+Validation

Two search algorithms

Sample a CNN model A
Optimize HW for A
IF the HW implementation of A is satisfactory

THEN Train and test A to get Accuracy
ELSE Discard A

REPEAT until not satisfactory
Report the best CNN-HW pair
Suitable if TIME(HW eval) << TIME(Train&Test)

+Validation

CNN
model A

Selected NAS methods with HW Co-design

36

in NAS – one search algorithm. The same algorithm is
used to search for the NN model and HW
configurations

see Sekanina L.: IEEE Access, 2021

NAS with HW Co-design: The NAAS method

37

• Normalized EDP and top-1 accuracy of ResNet (on ImageNet)

• Eyeriss accelerator

(Energy-Delay Product)

Y. Lin, M. Yang, and S. Han: NAAS: Neural accelerator
architecture search, DAC 2021

Comparison of selected NAS methods

38

• NAS methods are evaluated with respect to the
quality of produced CNNs and the resources needed
to generate them.

• Fair benchmarking of an extensive collection of NAS
methods (particularly the hardware-aware NAS
methods) remains an open research problem. The
difficulty is that too many aspects have to be
considered during the comparison, and their deep
cross-analysis is expensive to perform.

Figure:

• The top-1 accuracy (ImageNet), the number of MACs,
and latency on Pixel 1 phone for CNNs obtained using
selected NAS methods.

• An unknown latency is depicted using a grey color.

• The circle’s area is proportional to the total design
time (on a scale from 150 to 40 000 GPU hours).

• A unified benchmark for HW-NAS
to make HW-NAS research more
reproducible and accessible.

• Search spaces

– NAS-Bench-201: 46875
architectures (CIFAR-10, CIFAR-
100, ImageNet16-120)

– FBNet: 1021 architectures
(CIFAR-100, ImageNet)

• HW: Edge GPU, Edge TPU,
Raspberry Pi 4, Pixel 3, Eyeriss ,
FPGA

• Available information for each
NN model on a given HW:
Accuracy, Latency, Energy

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

39

Li Ch. et al. HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark, ICLR 2021

Example: NAS with approximate multipliers (1) [Pinos, Mrazek, Sekanina: GENP 2022]

40

EvoApproxNAS: Cartesian genetic programming + NSGA-II used to
design CNNs for image classification and select suitable approximate
multipliers (from EvoApproxLib for convolutional layers).
Approximate multipliers are employed to reduce power
consumption of the on-chip inference

Typical setup of CGP: 10 x 30 nodes, population_size = 8,
generations = 10, mutation-based search.

NAS with approximate multipliers (2)

41

Classification accuracy on CIFAR-10 vs. power consumption (of all multiplications in convolutional layers).

Hypervolume calculated from 10 runs.

NAS with approximate multipliers (3)

42

Classification accuracy on CIFAR-10 vs. CNN parameters

• We surveyed the key elements of recent NAS methods that - to various extents - consider
hardware implementation of the resulting CNN. We classified these NAS methods into three
major classes:

– single-objective NAS (no hardware is considered)

– hardware-aware NAS

– NAS with hardware co-optimization.

• NAS methods improve design productivity and enable the designer to automatically
obtain competitive CNNs for various hardware platforms and data sets.

• The original NAS approach was significantly accelerated by using pre-trained supernets,
adopting surrogate models, and incorporating the differentiable architecture search.

• Introducing the hardware search space has led to more efficient implementations of
CNNs on particular hardware platforms. However, several search algorithms working in
the space of weights, neural architectures, and hardware configurations have to be
coordinated, making the entire method complicated.

Conclusions

43

• Sze V., Chen Y.H., Yang T.J., Emer J.S.: Efficient Processing of Deep Neural
Networks. Morgan & Claypool Publishers, 2020

• Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural
networks: A tutorial and survey. Proc. of the IEEE, Vol. 105, No. 12, 2295-
2329, 2017

• Yanjiao Chen et al.: Deep Learning on Mobile and Embedded Devices:
State-of-the-art, Challenges, and Future Directions. ACM Comput. Surv. 53,
4, Article 84, 2020, 37 pages

• Venkataramani S. et al.: Efficient AI System Design With Cross-Layer
Approximate Computing. Proc. of the IEEE, Vol. 108, No. 12, 2020

• Mittal S., A survey of FPGA-based accelerators for convolutional neural
networks, Neural Comput. Appl., vol. 32, no. 4, pp. 1109-1139, 2020

References: CNNs and their efficient processing

44

• NAS
– T. Elsken, J. H. Metzen, and F. Hutter, Neural architecture search: A survey, J. Mach. Learn. Res., vol.

20, pp. 55:1-55:21, 2019
– K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, Designing neural networks through

neuroevolution, Nature Mach. Intell., vol. 1, pp. 24-35, 2019
– P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang, A comprehensive survey of neural

architecture search: Challenges and solutions, ACM Comput. Surveys, vol. 54, no. 4, pp. 1-34, 2021
– E.-G. Talbi, Automated design of deep neural networks: A survey and unified taxonomy, ACM

Comput. Surv., vol. 54, no. 2, pp. 1-37, 2021
– Vargas-Hákim G.A. et al. A Review on Convolutional Neural Network Encodings for Neuroevolution.

IEEE Tr. On Evol. Comp. 26(1), 2022

• HW-Aware NAS:
– Sekanina L.: Neural Architecture Search and Hardware Accelerator Co-Search: A Survey. IEEE Access,

Vol. 9, 2021, p. 151337-151362
– Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, Naigang

Wang: Hardware-Aware Neural Architecture Search: Survey and Taxonomy. Proc. of the Thirtieth
International Joint Conference on Artificial Intelligence Survey Track. 2021, Pages 4322-4329

References: NAS

45

46

Zdeněk Vašíček

Vojtěch Mrázek

Michal Piňos

Filip Vaverka

…

https://ehw.fit.vutbr.cz

This work was supported by the Czech Science Foundation projects:

Automated design of hardware accelerators for resource-aware machine learning, 21-13001S

AppNeCo: Approximate Neurocomputing, 22-02067S

Thank you!

Acknowledgements

	Default
	Snímek 1: Evolutionary Hardware-Aware Neural Architecture Search
	Snímek 2: Deep neural networks everywhere
	Snímek 3: Neural Network Design and Neural Architecture Search (NAS)
	Snímek 4: Outline
	Snímek 5: Convolutional neural networks
	Snímek 6: Parameters of popular hand-crafted CNNs (ImageNet)
	Snímek 7: Development of CNN-based image classifiers
	Snímek 8: Efficient processing of CNNs (for inference)
	Snímek 9: Memory Access is the Bottleneck
	Snímek 10: Quantization and bit widths
	Snímek 11: Quantization and approximation in ResNet
	Snímek 12: Approximate multipliers in ResNet
	Snímek 13: Outline
	Snímek 14: Accelerators for Machine Learning
	Snímek 15: Accelerators for inference processing
	Snímek 16: Two types of DNN accelerators
	Snímek 17: Example of an ASIC accelerator: Eyeriss (MIT, v1 2016; v2 2019)
	Snímek 18: Outline
	Snímek 19: Single-objective NAS
	Snímek 20: Search Spaces and CNN encoding
	Snímek 21: Search Algorithms: Reinforcement learning
	Snímek 22: Search Algorithms: Genetic Algorithm
	Snímek 23: Search Algorithms: Differentiable Neural Architecture Search
	Snímek 24: Comparison of single-objective NAS methods from 2018
	Snímek 25: Supernet (one-shot network)
	Snímek 26: Selected single-objective NAS methods
	Snímek 27: Outline
	Snímek 28: Multi-objective NAS for a particular (fixed) hardware
	Snímek 29: Multi-objective NAS for a particular (fixed) hardware
	Snímek 30: Shortening the evaluation time: Accuracy
	Snímek 31: Shortening the evaluation time: Hardware metrics
	Snímek 32: DNN-to-Accelerator Mapping and Energy estimation SW tools
	Snímek 33: Selected hardware-aware NAS methods
	Snímek 34: NAS with HW Co-design: Three search spaces!
	Snímek 35: NAS with HW Co-design: selected approaches
	Snímek 36: Selected NAS methods with HW Co-design
	Snímek 37: NAS with HW Co-design: The NAAS method
	Snímek 38: Comparison of selected NAS methods
	Snímek 39: HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark
	Snímek 40: Example: NAS with approximate multipliers (1) [Pinos, Mrazek, Sekanina: GENP 2022]
	Snímek 41: NAS with approximate multipliers (2)
	Snímek 42: NAS with approximate multipliers (3)
	Snímek 43: Conclusions
	Snímek 44: References: CNNs and their efficient processing
	Snímek 45: References: NAS
	Snímek 46: Acknowledgements

