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Deep neural networks everywhere
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1. What is the best NN model for a given task and hardware?

Images taken from Internet.

DATA SETS

2. What is the best NN model and HW configuration for a given task?

Hello -> Bonjour



Neural Network Design and Neural Architecture Search (NAS)
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• Efficient processing of CNNs

• Hardware accelerators for CNNs

• Single-objective Neural Architecture Search (NAS)
– Search spaces and Search algorithms

– Performance predictors

– Classification of NAS methods

• Multi-objective Neural Architecture Search
– Hardware-aware NAS

– NAS with HW Co-design

– Classification of NAS methods

• Benchmarking of NAS methods

• EvoApproxNAS

• Conclusions

Outline
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The number of papers on NAS according to 
automl.org (January 13, 2023)
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This talk is mostly based on:

Sekanina L.: Neural Architecture Search and Hardware Accelerator Co-Search: A Survey. IEEE Access, Vol. 9, 2021

Sze V. et al. Efficient processing of deep neural networks, Morgan & Claypool, 2020

https://www.rle.mit.edu/eems/publications/tutorials/



Convolutional neural networks

5
Adopted from Sze et al. 2020

Normalizing 

to (=0, =1).

Pooling

Fully Connected layer

The output layer has k such 
neurons when classifying into 
k classes. The softmax gives 
the probability of i-th class:



Parameters of popular hand-crafted CNNs (ImageNet)

6

Linear structure 
of AlexNet

Residual 
block from 
ResNet

Inception block 
from GoogleNet

Rank Model
Top-1 

Accuracy Parameters Year

1 ViT-G/14 91.78% 1843M 2022

2 ViTAE-H 91.20% 644M 2022

7 FixEfficientNet-L2 90.90% 480M 2020

12 CvT-W24 90.60% 277M 2021

13 EfficientNet-L2 90.55% 480M 2019

14 ViT-L/16 90.54% 307M 2020

15 BiT-L 90.54% 928M 2019

18 Mixer-H/14- 448 90.18% 409M 2021

19 FixEfficientNet-B8 90.00% 87M 2020

21 FixResNeXt-101 89.73% 829M 2019

22 DeiT-B-384 89.30% 86M 2020

29 NASNet-A Large 87.56% 2017

41 ResNet-152 84.79% 2015

45 ResNet-50 82.94% 25M 2015

paperswithcode.com, April 4, 2022

ViT - Vision 
Transformers



Development of CNN-based image classifiers
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https://arxiv.org/abs/2101.09336

ImageNet: 
256x256 pixel images
1000 classes
1.2M training images
100k test images



Objective: Starting with a CNN model, develop its 
implementation(s) showing best tradeoffs between 
Accuracy and Latency/Energy/Memory Size for a 
given hardware.

Selected approaches

• Structure refinement
– Optimized matrix multiplication, reducing the 

number of MACs, … 

– Compute reuse

• Data-oriented refinement
– Quantization

– Weight sharing

– Pruning

• Operator refinement
– Dedicated operators 

– Approximate operators

Efficient processing of CNNs (for inference)

8



Memory Access is the Bottleneck
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Adopted from Sze et al. 2020

Example:
No reuse: 2896M DRAM 
accesses required for AlexNet
(724M MACs).

Input data reuse: 61M DRAM 
accesses for AlexNet by exploiting 
low-cost local memory ~ 500x
reduction



Quantization and bit widths
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BFP – Block Floating Point

• What to quantize
– Inference: weights, activations, partial sums
– Training: weights, activations, partial sums, gradients, weight 

update

• When
– quantization-aware training
– fine-tuning (training data required)
– post-training quantization without any fine tuning

• Where
– uniform (the entire NN)
– non-uniform (layer level, channel level, …)

• Data formats
– Floating point 8/16/32 bit; dynamic floating point
– Fixed point/integer 4/8/16 bit
– Binary and ternary {-c, 0, +c}, where c is a learnable parameter
– Log representation

• Choosing quantized values
– uniform
– non-uniform (powers of 2, heuristically determined)

• Typical bit widths
– 8 bit for inference (FX)
– 16 bit for training (FP)



Quantization and approximation in ResNet
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TFApprox enables the use of approx. multipliers in TensorFlow (GPU)

Mrázek, Sekanina et al. JETCAS 2020https://github.com/ehw-fit/tf-approximate

*
10

15
150

Error = 0
Power = 100%
Latency = 100%

Standard 8-bit multiplier

*a

10

15
148

Worst Error = 5%
Power = 61%
Latency = 82%

Approximate 8-bit multiplier
(taken from EvoApproxLib)



Approximate multipliers in ResNet

• All exact 8-bit multiplications of all convolutional layers of different ResNet CNNs were replaced with one 
approximate implementation. Repeated for 35 different approximate 8-bit multipliers (from EvoApproxLib) 
to find Pareto fronts (Accuracy on CIFAR-10 vs. Energy).

*

+
8

N

8+N

1. Improved the 
Accuracy-Energy 
tradeoffs
2. Reduced size of 
weight memory!

WEIGHT, N = {8, 7, 6, 5, 4}

Mrázek, Sekanina et al. JETCAS 2020
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• Efficient processing of CNNs

• Hardware accelerators for CNNs

• Single-objective Neural Architecture Search (NAS)
– Search spaces and Search algorithms

– Performance predictors

– Classification of NAS methods

• Multi-objective Neural Architecture Search
– Hardware-aware NAS

– NAS with HW Co-design

– Classification of NAS methods

• Benchmarking of NAS methods

• Conclusions

Outline
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Accelerators for Machine Learning

Reuther A. et al. arxiv.org/pdf/1908.11348.pdf

14



Performance: the number of inferences per second 

Energy-efficiency: the number of inferences per Watt/s  

Accelerators for inference processing

15

Unconventional platforms: in-memory computing, stochastic computing, memristive, RRAM, … 

AlexNet on various platforms



Two types of DNN accelerators
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Temporal Architecture

Adopted from Sze et al. 2020

CPU, GPU
(for training & inference)

ASIC, FPGA
(usually for inference only)

Spatial Architecture

Data flow strategy:
how reusing of 
input data (weights
and activations) 
and local partial 
sums accumulation 
is implemented.



Example of an ASIC accelerator: Eyeriss (MIT, v1 2016; v2 2019)

17Adopted from Sze et al. 2020

AlexNet
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Outline

18



Single-objective NAS
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• The aim of NAS is to automate the process of 
finding the most suitable NN architecture for 
a given dataset. The single-objective NAS has 
one objective - maximizing the Accuracy.

– Neuro-evolution has been performed in the 
Evolutionary Algorithms community since the 
mid-1980.

– NAS has been connected with DNNs since 
2016.

• Key components of NAS methods
– Search space

– Search algorithm

– Performance estimation/evaluation

• Target hardware: usually GPU

Single-objective NAS (basic version)

Dtrn – training data

Dtst – test data

 – a candidate NN model

w – weights

Acc - Accuracy



Search Spaces and CNN encoding
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Candidate CNN ~ string of integers
Search space ~ all feasible strings

Macro search space
- The entire CNN 

is encoded.
- Some parts can 

be fixed by the 
designer.

Micro search space
- A subgraph (cell, 
block) or subgraphs 
is/are encoded and 
reused.

Hierarchical search 
space
- Recursive 
construction using 
a set of small 
graphs.

Indirect encoding
- A construction 

program is 
encoded.

- The program is 
executed to 
build a NN.

(Node ID; Operation; Parameter; Source ID 1; Source ID 2). 
Set of operations: (1) convolution, (2) max. pooling, (3) 
average pooling, (4) identity, (5) add, (6) concatenation,  (7) 
terminal node [87].

Recent survey:

Vargas-Hákim G.A. et al. A Review on Convolutional Neural Network 
Encodings for Neuroevolution. IEEE Tr. On Evol. Comp. 26(1), 2022



Search Algorithms: Reinforcement learning
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A recurrent neuron (left) unrolled through time (right)

• The agent’s action is the generation of a CNN 
architecture.

• The agent’s reward is the accuracy of CNN (obtained after 
training and validation on the test set). 

• The agent (controller) is typically implemented as a 
recurrent neural network (RNN). 

• The parameters of the RNN are optimized (using policy 
gradients techniques such as REINFORCE) in order to 
maximize the expected validation accuracy. 

Agent 
(controller, RNN)

Training and 
validation of CNN

Action: Sample
CNN architecture
(5, 7, 15, 6, …)

Reward:
Accuracy (CNN)
+ Update RNN



Search Algorithms: Genetic Algorithm 
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Example: Zhichao Lu et al. NSGA-Net, GECCO 2019

Encoding: CNN is a set of phases; max. 6 nodes in each phase encoded using a bit string. A node can be convolution, 
pooling, batch-normalization…

Search method: 

NSGA-II (classification error vs the number of 
FLOPs), crossover, bit flip mutation, Bayesian 
Optimization Algorithm, population size = 40, 
generations = 20+10, i.e. 1200 network 
architectures are created in a single run

Training (during the evolution): SGD (Stochastic 
Gradient Descent) for 25 epochs

Validation of evolved CNNs: 600 epochs, batch 
size 96, data preprocessing, regularization …

Crossover:



Search Algorithms: Differentiable Neural Architecture Search

23

The weights w and continuous parameters 

representing the NN architecture are jointly optimized 

by a gradient method.

Node x(i): Feature map

Edge o(i,j): Operation, e.g. Conv3, Conv5, AvgPool

DARTS reduced the search time 10x-500x on ImageNet.

1 discrete 
variable for  
3 options

3 continuous 
variables i

the most 
likely one 
is selected



Comparison of single-objective NAS methods from 2018

24

H. Liu, K. Simonyan, and Y. Yang, ``DARTS: Differentiable architecture search,‘’ ICLR 2019

Mobile setting: up to 600 million MACs per inference

SMBO –
Sequential 
Model Based 
Optimization



• Idea: Each candidate CNN could be seen as a subnetwork of a larger network.

• A single large over-parameterized network (supernet) is constructed such that it contains every possible 
operation in the search space. 

• Once the supernet model is trained (which is very expensive!), it is used for evaluating the performance of 
many different architectures (subnetworks) sampled by zeroing out or removing some operations. 

• The expensive design of supernet is amortized by reusing it for different target scenarios (chips).

Supernet (one-shot network)

25

Each cell has  choice blocks and each choice block can select up to 2 
operations. Solid edges are used in every architecture, where dash lines 
are optional (Bender et al 2018)



Selected single-objective NAS methods

26SMBO – Sequential Model Based Optimizationsee Sekanina L.: IEEE Access, 2021
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• Single-objective Neural Architecture Search (NAS)
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Outline
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Multi-objective NAS for a particular (fixed) hardware

28

Additional 
Objectives:

Latency

Area

Energy

RAM size

Flash size

#MAC 

Reliability

etc.

Hardware-aware NAS is a NAS reflecting a 
given hardware executing the inference.

Important: Hardware itself is not optimized! 
There is no additional search space of 
hardware configurations.

Benmeziane et al. 2021



Multi-objective NAS for a particular (fixed) hardware

29

ProxylessNAS optimizing Accuracy and Latency

Possibilities when solving a multi-objective 
optimization problem with objective 
functions f1 … fm:
1. Transform it into a single-objective 

problem (using suitable constraints, 
prioritization, or aggregation
techniques) and solve it with a common 
single-objective method

2. Employ a truly multi-objective 
approach, e.g. NSGA-II, that utilizes the 
concept of Pareto dominance during the 
search.



• Simplify the common 
approach
– Employ a proxy data set

– Reduce the number of training 
epochs

– Extrapolate the learning curve

– etc.

• Build a surrogate model –
Accuracy predictor
– NN 

– regression trees

– Gaussian process (GP)

– etc.

• NAS needs only the rank of the 
performance values

Shortening the evaluation time: Accuracy

30
Results on NASBench-101 (CIFAR-10) by Wen W. et al. ECCV 2020



Hardware metrics: Latency, Energy, Area, Memory etc.

Methods according to Benmeziane et al. 2021:

• Baseline: Real-time measurements on target hardware.

• Analytical Estimation - consists of analytical computing 
a rough estimate, e.g., using the processing time, the 
stall time, and the starting time.

• Prediction Model a ML model is built to predict the cost 
using architecture and dataset features.

• Lookup Table Models

Shortening the evaluation time: Hardware metrics

31

#MAC is not a good proxy for latency! Shown 
for various NN models on a Google Pixel phone. 

Benmeziane et al. 2021



DNN-to-Accelerator Mapping and Energy estimation SW tools 
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• Timeloop [Parashar, ISPASS 2019]

– A tool searching for the most suitable mapping of DNN to 
HW accelerator (several search methods implemented)

• Layer-wise data tiling reflecting the memory hierarchy of the 
accelerator

– HW accelerator is described at the architecture level, incl. 
data flow organization

– Performance Simulator -> Action counts

• Accelergy [Wu, ICCAD 2019]

– Early stage energy estimation tool at the architecture level

• Estimate energy consumption based on architecture level 
components (e.g., # of PEs, memory size, on-chip network)

• Plug-ins for different technologies

480k different mappings of 
VGG_conv3_2 to an 
accelerator



Selected hardware-aware NAS methods

33Lat – Latency, Mem – RAM size; Flash – Flash size
see Sekanina L.: IEEE Access, 2021



NAS with HW Co-design: Three search spaces!
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We can observe that the HW-aware NAS has a much 

narrower search space than the proposed co-

exploration approach. Basically, HW-aware NAS 

will prune the architectures that violates hardware 

specifications on a fixed hardware design. However, 

by opening the hardware design space, it is possible 

to find a tailor-made hardware design for the pruned 

architectures to make them meet the hardware 

specifications. Therefore, compared with the HW-

aware NAS, the co-exploration approach enlarges 

the search space. As a result, it can make better 

tradeoffs between accuracy and hardware efficiency.  

[Jiang et al. IEEE TCAD 2020]

Search Spaces

NN models

NN weights

HW 
configurations

Search Algorithms

RL, EA, SMBO, gradient …

Gradient

EA, ILP, gradient, … 
join with

Bit widths
Quantization
PE array size
Buffer size
MAC circuit configuration (approx. multipliers)
Dataflow organization
Tiling strategy
Loop order
Memory subsystem parameters
Preferences for the high-level synthesis SW
…



NAS with HW Co-design: selected approaches
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One search algorithm

Sample CNN & HW configuration
Evaluate Accuracy & Obtain HW parameters
REPEAT until not satisfactory
Report the best CNN-HW pair

Too time-consuming!

+Validation

Two search algorithms

Sample a CNN model A
Optimize HW for A
IF the HW implementation of A is satisfactory

THEN Train and test A to get Accuracy
ELSE Discard A

REPEAT until not satisfactory
Report the best CNN-HW pair
Suitable if TIME(HW eval) << TIME(Train&Test)

+Validation

CNN 
model A



Selected NAS methods with HW Co-design

36

in NAS – one search algorithm. The same algorithm is 
used to search for the NN model and HW 
configurations

see Sekanina L.: IEEE Access, 2021



NAS with HW Co-design: The NAAS method
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• Normalized EDP and top-1 accuracy of ResNet (on ImageNet)

• Eyeriss accelerator

(Energy-Delay Product)

Y. Lin, M. Yang, and S. Han: NAAS: Neural accelerator 
architecture search, DAC 2021



Comparison of selected NAS methods
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• NAS methods are evaluated with respect to the 
quality of produced CNNs and the resources needed
to generate them.

• Fair benchmarking of an extensive collection of NAS 
methods (particularly the hardware-aware NAS 
methods) remains an open research problem. The 
difficulty is that too many aspects have to be 
considered during the comparison, and their deep 
cross-analysis is expensive to perform.

Figure:

• The top-1 accuracy (ImageNet), the number of MACs, 
and latency on Pixel 1 phone for CNNs obtained using 
selected NAS methods.

• An unknown latency is depicted using a grey color.

• The circle’s area is proportional to the total design 
time (on a scale from 150 to 40 000 GPU hours).



• A unified benchmark for HW-NAS 
to make HW-NAS research more 
reproducible and accessible.

• Search spaces

– NAS-Bench-201: 46875 
architectures (CIFAR-10, CIFAR-
100, ImageNet16-120)

– FBNet: 1021 architectures 
(CIFAR-100, ImageNet)

• HW: Edge GPU, Edge TPU, 
Raspberry Pi 4, Pixel 3, Eyeriss , 
FPGA

• Available information for each 
NN model on a given HW: 
Accuracy, Latency, Energy

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

39

Li Ch. et al. HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark, ICLR 2021



Example: NAS with approximate multipliers (1) [Pinos, Mrazek, Sekanina: GENP 2022]
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EvoApproxNAS: Cartesian genetic programming + NSGA-II used to 
design CNNs for image classification and select suitable approximate 
multipliers (from EvoApproxLib for convolutional layers). 
Approximate multipliers are employed to reduce power 
consumption of the on-chip inference 

Typical setup of CGP: 10 x 30 nodes, population_size = 8, 
generations = 10, mutation-based search.



NAS with approximate multipliers (2)

41

Classification accuracy on CIFAR-10 vs. power consumption (of all multiplications in convolutional layers).  

Hypervolume calculated from 10 runs.



NAS with approximate multipliers (3)

42

Classification accuracy on CIFAR-10 vs. CNN parameters



• We surveyed the key elements of recent NAS methods that - to various extents - consider 
hardware implementation of the resulting CNN. We classified these NAS methods into three 
major classes: 

– single-objective NAS (no hardware is considered) 

– hardware-aware NAS

– NAS with hardware co-optimization.

• NAS methods improve design productivity and enable the designer to automatically 
obtain competitive CNNs for various hardware platforms and data sets. 

• The original NAS approach was significantly accelerated by using pre-trained supernets, 
adopting surrogate models, and incorporating the differentiable architecture search. 

• Introducing the hardware search space has led to more efficient implementations of 
CNNs on particular hardware platforms. However, several search algorithms working in 
the space of weights, neural architectures, and hardware configurations have to be 
coordinated, making the entire method complicated.

Conclusions

43



• Sze V., Chen Y.H., Yang T.J., Emer J.S.: Efficient Processing of Deep Neural 
Networks. Morgan & Claypool Publishers, 2020

• Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural 
networks: A tutorial and survey. Proc. of the IEEE, Vol. 105, No. 12, 2295-
2329, 2017

• Yanjiao Chen et al.: Deep Learning on Mobile and Embedded Devices: 
State-of-the-art, Challenges, and Future Directions. ACM Comput. Surv. 53, 
4, Article 84,  2020, 37 pages

• Venkataramani S. et al.: Efficient AI System Design With Cross-Layer 
Approximate Computing. Proc. of the IEEE, Vol. 108, No. 12, 2020

• Mittal S., A survey of FPGA-based accelerators for convolutional neural 
networks, Neural Comput. Appl., vol. 32, no. 4, pp. 1109-1139, 2020

References: CNNs and their efficient processing 

44



• NAS
– T. Elsken, J. H. Metzen, and F. Hutter, Neural architecture search: A survey, J. Mach. Learn. Res., vol. 

20, pp. 55:1-55:21, 2019
– K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, Designing neural networks through 

neuroevolution, Nature Mach. Intell., vol. 1, pp. 24-35, 2019
– P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang, A comprehensive survey of neural 

architecture search: Challenges and solutions, ACM Comput. Surveys, vol. 54, no. 4, pp. 1-34, 2021
– E.-G. Talbi, Automated design of deep neural networks: A survey and unified taxonomy, ACM 

Comput. Surv., vol. 54, no. 2, pp. 1-37, 2021
– Vargas-Hákim G.A. et al. A Review on Convolutional Neural Network Encodings for Neuroevolution. 

IEEE Tr. On Evol. Comp. 26(1), 2022

• HW-Aware NAS:
– Sekanina L.: Neural Architecture Search and Hardware Accelerator Co-Search: A Survey. IEEE Access, 

Vol. 9, 2021, p. 151337-151362
– Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, Naigang

Wang: Hardware-Aware Neural Architecture Search: Survey and Taxonomy. Proc. of the Thirtieth 
International Joint Conference on Artificial Intelligence Survey Track. 2021, Pages 4322-4329

References: NAS
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…

https://ehw.fit.vutbr.cz
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Thank you!
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