JavaScript is required to use this site. Please enable JavaScript in your browser settings.

Supervisor

Author

Anomaly Detection in Laser Metal Deposition with Metal Powder Using Deep Learning on Inline Process Monitoring Data

Status: at work / Type of Theses: Master theses / Location: Dresden

Laser metal deposition with metal powder is a complex process prone to anomalies. Deep learning-based anomaly detection can be applied to inline process monitoring data to identify deviations from normal behavior in real-time, enabling prompt intervention and improved part quality.

funded by:
Gefördert vom Bundesministerium für Bildung und Forschung.
Gefördert vom Freistaat Sachsen.