JavaScript is required to use this site. Please enable JavaScript in your browser settings.

Supervisor

DGNN4CV2RS: Dynamic graph neural networks for computer vision to analyze remote sensing images

Status: open / Type of Theses: Master theses / Location: Dresden

We leverage dynamic graph neural networks (DGNN) for computer vision (CV) tasks to study remote sensing (RS) imagery, including denoising, classification, or prediction. Moreover, DGNN also provide more explainable decomposition to CV models. Depending on temporal resolution, autoregression (AR), recurrent neural network (RNN) or long short-term memory (LSTM) may be used. Available datasets (e.g., agricultural RS) are open source.

Prerequisites:
Basics of Statistics, GNN
PyTorch

funded by:
Gefördert vom Bundesministerium für Bildung und Forschung.
Gefördert vom Freistaat Sachsen.