JavaScript is required to use this site. Please enable JavaScript in your browser settings.

2015

  • Braunschweig, K., Thiele, M., & Lehner, W. (2015). From web tables to concepts: A semantic normalization approach. In Conceptual Modeling, Lecture notes in computer science (pp. 247–260). Cham: Springer International Publishing.
  • Christen, V., Groß, A., Varghese, J., Dugas, M., & Rahm, E. (2015). Annotating medical forms using UMLS. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 55–69). Cham: Springer International Publishing.
  • Dietrich, A., Buetof, R., Fursov, A., Tillner, F., Loeck, S., Haase, R., Baumann, M., et al. (2015). Image Guided orthotopic Tumor Models in Small Animals. In STRAHLENTHERAPIE UND ONKOLOGIE (Vol. 191, pp. S24-S25). URBAN & VOGEL NEUMARKTER STRASSE 43, D-81673 MUNICH, GERMANY.
  • Eberius, J., Braunschweig, K., Hentsch, M., Thiele, M., Ahmadov, A., & Lehner, W. (2015). Building the Dresden web table corpus: A classification approach. In 2015 IEEE/ACM 2nd International Symposium on Big Data Computing (BDC). Limassol: IEEE.
  • Eberius, J., Thiele, M., Braunschweig, K., & Lehner, W. (2015). DrillBeyond: processing multi-result open world SQL queries. In Proceedings of the 27th International Conference on Scientific and Statistical Database Management, SSDBM ’15. La Jolla, California: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/2791347.2791370
  • Eberius, J., Thiele, M., Braunschweig, K., & Lehner, W. (2015). Top-k entity augmentation using consistent set covering. In Proceedings of the 27th International Conference on Scientific and Statistical Database Management. La Jolla California: ACM.
  • Ebert, M. P., Meindl-Beinker, N. M., Gutting, T., Maenz, M., Betge, J., Schulte, N., Zhan, T., et al. (2022). Second-line therapy with nivolumab plus ipilimumab for older patients with oesophageal squamous cell cancer (RAMONA): a multicentre, open-label phase 2 trial. Lancet Healthy Longev., 3(6), e417-e427. Elsevier BV.
  • Flegel, T., Neumann, A., Holst, A.-L., Kretzschmann, O., Loderstedt, S., Tästensen, C., Gutmann, S., et al. (2024). Machine learning algorithms predict canine structural epilepsy with high accuracy. Frontiers in Veterinary Science, 11. Retrieved from https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2024.1406107
  • Fröbe, M., Günther, S., Probst, M., Potthast, M., & Hagen, M. (2022). Webis-MS-MARCO-Anchor-Texts-22. Zenodo.
  • Gaunitz, B., Roth, M., & Franczyk, B. (2015). Dynamic and Scalable Real-Time Analytics in Logistics - Combining Apache Storm with Complex Event Processing for Enabling New Business Models in Logistics. In ENASE 2015 - Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering.
  • Ghiasvand, S., Ciorba, F. M., Tschuter, R., & Nagel, W. E. (2015). Analysis of Node Failures in High Performance Computers Based on System Logs. In International Conference for High Performance Computing, Networking, Storage and Analysis (SC). Austin, Texas, USA. Retrieved from http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post338.html
  • Hartmann, C., Hahmann, M., Lehner, W., & Rosenthal, F. (2015). Exploiting big data in time series forecasting: A cross-sectional approach. In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (pp. 1–10).
  • Jäkel, R., Müller-Pfefferkorn, R., Kluge, M., Grunzke, R., & Nagel, W. E. (2015). Architectural implications for exascale based on big data workflow requirements. In Big Data and High Performance Computing (pp. 101–113). IOS Press.
  • Jakobi, A., Bandurska-Luque, A., Stützer, K., Haase, R., Löck, S., Wack, L.-J., Mönnich, D., et al. (2015). Identification of patient benefit from proton therapy for advanced head and neck cancer patients based on individual and subgroup normal tissue complication probability analysis. International Journal of Radiation Oncology* Biology* Physics, 92(5), 1165–1174. Elsevier.
  • Jakobi, A., Stützer, K., Bandurska-Luque, A., Löck, S., Haase, R., Wack, L.-J., Mönnich, D., et al. (2015). NTCP reduction for advanced head and neck cancer patients using proton therapy for complete or sequential boost treatment versus photon therapy. Acta Oncologica, 54(9), 1658–1664. Taylor & Francis.
  • Junghanns, M., Petermann, A., Gómez, K., & Rahm, E. (2015). GRADOOP: Scalable Graph Data Management and Analytics with Hadoop. CoRR, abs/1506.00548. Retrieved from http://arxiv.org/abs/1506.00548
  • Kirillov, A., Savchynskyy, B., Schlesinger, D., Vetrov, D., & Rother, C. (2015). Inferring M-Best Diverse Labelings in a Single One. In 2015 IEEE International Conference on Computer Vision (ICCV) (pp. 1814–1822).
  • Kister, U., Reipschläger, P., Matulic, F., & Dachselt, R. (2015). BodyLenses: Embodied Magic Lenses and Personal Territories for Wall Displays. In Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces, ITS ’15 (pp. 117–126). Madeira, Portugal: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/2817721.2817726
  • Klamka, K., & Dachselt, R. (2015). Elasticcon: Elastic Controllers for Casual Interaction. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI ’15 (pp. 410–419). Copenhagen, Denmark: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/2785830.2785849
  • Knutzen, F., Averbeck, P., Barrasso, C., Bouwer, L. M., Gardiner, B., Grünzweig, J. M., Hänel, S., et al. (2023). Impacts and damages of the European multi-year drought and heat event 2018–2022 on forests, a review.
  • Krull, A., Brachmann, E., Michel, F., Yang, M. Y., Gumhold, S., & Rother, C. (2015). Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images. CoRR, abs/1508.04546. Retrieved from http://arxiv.org/abs/1508.04546
  • Nagel, W. E., Jäkel, R., & Müller-Pfefferkorn, R. (2015). Execution environments for Big Data: Challenges for user centric scenarios. In BDEC white paper BDEC. Proc. Int. Workshop on Extreme Scale Scientific Computing (Big Data and Extreme Computing, BDEC), Barcelona.
  • Perera, K. S., Hahmann, M., Lehner, W., Pedersen, T. B., & Thomsen, C. (2015). Modeling Large Time Series for Efficient Approximate Query Processing. In A. Liu, Y. Ishikawa, T. Qian, S. Nutanong, & M. A. Cheema (Eds.), Database Systems for Advanced Applications (pp. 190–204). Cham: Springer International Publishing.
  • Richmond, D. L., Kainmueller, D., Yang, M. Y., Myers, E. W., & Rother, C. (2015). Relating Cascaded Random Forests to Deep Convolutional Neural Networks for Semantic Segmentation. CoRR, abs/1507.07583. Retrieved from http://arxiv.org/abs/1507.07583
  • Rost, C., Gomez, K., Täschner, M., Fritzsche, P., Schons, L., Christ, L., Adameit, T., et al. (2022). Distributed temporal graph analytics with GRADOOP. VLDB J., 31(2), 375–401. Springer Science and Business Media LLC.
  • Sehili, Z., Kolb, L., Borgs, C., Schnell, R., & Rahm, E. (2015). Privacy Preserving Record Linkage with PPJoin. In .
  • Sliwoski, G., Mendenhall, J., & Meiler, J. (2015). Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign. Journal of Computer-Aided Molecular Design, 30(3), 209–217. Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1007/s10822-015-9893-9
  • Sodoge, J., Kuhlicke, C., Mahecha, M. D., & de Brito, M. M. (2024). Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany. Natural Hazards and Earth System Sciences, 24(5), 1757–1777. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/nhess-24-1757-2024
  • Spangenberg, N., Roth, M., & Franczyk, B. (2015). Evaluating New Approaches of Big Data Analytics Frameworks. In W. Abramowicz (Ed.), Business Information Systems (pp. 28–37). Cham: Springer International Publishing.
  • Staib, J., Grottel, S., & Gumhold, S. (2015). Visualization of Particle-based Data with Transparency and Ambient Occlusion. Computer Graphics Forum, 34.
  • Theodorou, V., Abelló, A., Thiele, M., & Lehner, W. (2015). POIESIS: A tool for quality-aware ETL process redesign. OpenProceedings.org.
  • Tiepmar, J. (2015). Release of the MySQL based implementation of the CTS protocol. In P. Ba≈Ñski, H. Biber, E. Breiteneder, M. Kupietz, H. Lüngen, & A. Witt (Eds.), Proceedings of the 3rd Workshop on Challenges in the Management of Large Corpora (CMLC-3), Lancaster, 20 July 2015, Proceedings of the 3rd Workshop on Challenges in the Management of Large Corpora (CMLC-3), Lancaster, 20 July 2015 (pp. 35–43). Mannheim: Institut für Deutsche Sprache. Retrieved from https://nbn-resolving.org/urn:nbn:de:bsz:mh39-38374
  • Ulbricht, M. (2021). On the maximal number of complete extensions in abstract argumentation frameworks. In Proceedings of the Eighteenth International Conference on Principles of Knowledge Representation and Reasoning. Hanoii, Vietnam: International Joint Conferences on Artificial Intelligence Organization.
  • Volke, S., Zeckzer, D., Scheuermann, G., & Middendorf, M. (2015). A Visual Method for Analysis and Comparison of Search Landscapes. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15 (pp. 497–504). Madrid, Spain: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/2739480.2754733
  • Vrandev ci’c, D., Pintscher, L., & Krötzsch, M. (2023). Wikidata: The Making Of. In Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, & G.-J. Houben (Eds.), Companion Proceedings of the ACM Web Conference 2023 (WWW’23) (pp. 615–624). United States of America: Association for Computing Machinery (ACM), New York.
  • Xavier, L. C. P., da Silva, S. M. O., Carvalho, T. M. N., Filho, J. D. P., & de Assis de Souza Filho, F. (2020). Use of Machine Learning in Evaluation of Drought Perception in Irrigated Agriculture: The Case of an Irrigated Perimeter in Brazil. Water, 12(6), 1546. Multidisciplinary Digital Publishing Institute.
  • Zschaeck, S., Haase, R., Abolmaali, N., Perrin, R., Stützer, K., Appold, S., Steinbach, J., et al. (2015). Spatial distribution of FMISO in head and neck squamous cell carcinomas during radio-chemotherapy and its correlation to pattern of failure. Acta Oncologica, 54(9), 1355–1363. Taylor & Francis.
funded by:
Gefördert vom Bundesministerium für Bildung und Forschung.
Gefördert vom Freistaat Sachsen.