JavaScript is required to use this site. Please enable JavaScript in your browser settings.

2017

  • Ahmadov, A., Thiele, M., Lehner, W., & Wrembel, R. (2017). Context Similarity for Retrieval-Based Imputation. In (pp. 1017–1024).
  • Amann, W. (2017). Vergleich und Evaluation von RDF-on-Hadoop-Lösungen. In Datenbanksysteme für Business, Technologie und Web (BTW 2017) - Workshopband (pp. 385–396). Bonn: Gesellschaft für Informatik e.V.
  • Bussert, R., Kämpf, H., Flechsig, C., Hesse, K., Nickschick, T., Liu, Q., Umlauft, J., et al. (2017). Drilling into an active mofette: pilot-hole study of the impact of CO 2-rich mantle-derived fluids on the geo--bio interaction in the western Eger Rift (Czech Republic). Scientific Drilling, 23, 13–27. Copernicus Publications Göttingen, Germany.
  • Carvalho, T. M. N., de Araújo, C. B. C., Pereira, W. J. X., & de Assis de Souza Filho, F. (2017). Avaliação do uso de cisternas como medida compensatória para atenuação de picos de cheia na Bacia do Pajeú utilizando o SWMM.
  • Christen, V., Groß, A., Fisher, J., Wang, Q., Christen, P., & Rahm, E. (2017). Temporal group linkage and evolution analysis for census data. In V. Markl, S. Orlando, B. Mitschang, P. Andritsos, K.-U. Sattler, & S. Breß (Eds.), Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017 (pp. 620–631). OpenProceedings.org. Retrieved from https://doi.org/10.5441/002/edbt.2017.83
  • Ebert, M. P., Meindl-Beinker, N. M., Gutting, T., Maenz, M., Betge, J., Schulte, N., Zhan, T., et al. (2022). Second-line therapy with nivolumab plus ipilimumab for older patients with oesophageal squamous cell cancer (RAMONA): a multicentre, open-label phase 2 trial. Lancet Healthy Longev., 3(6), e417-e427. Elsevier BV.
  • Flegel, T., Neumann, A., Holst, A.-L., Kretzschmann, O., Loderstedt, S., Tästensen, C., Gutmann, S., et al. (2024). Machine learning algorithms predict canine structural epilepsy with high accuracy. Frontiers in Veterinary Science, 11. Retrieved from https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2024.1406107
  • Frenzel, J., Feldhoff, K., J¨akel, R., & M¨uller-Pfefferkorn, R. (2017). Tracing of Multi-Threaded Java Applications in Score-P Using JVMTI and User Instrumentation. In . Retrieved from https://api.semanticscholar.org/CorpusID:221689176
  • Fritzsch, C., Hoffmann, J., & Bogdan, M. (2017). Separated Random Number Generators for Virtual Machines. Gesellschaft für Informatik Bonn.
  • Fröbe, M., Günther, S., Probst, M., Potthast, M., & Hagen, M. (2022). Webis-MS-MARCO-Anchor-Texts-22. Zenodo.
  • Ghiasvand, S., & Ciorba, F. M. (2017). Event Pattern Identification in Anonymized System Logs. In International Supercomputing Conference (ISC). Frankfurt, Germany.
  • Ghiasvand, S., & Ciorba, F. M. (2017). Towards Adaptive Resilience in High Performance Computing. In E. Grosspietsch & K. Kloeckner (Eds.), Proceedings of WiP in 25th EUROMICRO International Conference on Parallel, Distributed and Network-based Processing (Vol. 1, pp. 5–6). St. Petersburg, Russia: SEA-Publications-Austria.
  • Grallert, T., Tiepmar, J., Eckart, T., Goldhahn, D., & Kuras, C. (2017). Digital Muqtabas CTS Integration in CLARIN. In CLARIN Annual Conference.
  • Grottel, S., Müller, C., Staib, J., & Gumhold, S. (2017). Extraction and Visualization of Structure-Changing Events in Molecular Dynamics Data.
  • Grunzke, R., Hartmann, V., Jejkal, T., Prabhune, A., Herold, H., Deicke, A., Hoffmann, A., et al. (2017, February). Towards a metadata-driven multi-community research data management service.
  • Grunzke, R., Jug, F., Schuller, B., Jäkel, R., Myers, G., & Nagel, W. E. (2017). Seamless HPC Integration of Data-Intensive KNIME Workflows via UNICORE. In F. Desprez, P.-F. Dutot, C. Kaklamanis, L. Marchal, K. Molitorisz, L. Ricci, V. Scarano, et al. (Eds.), Euro-Par 2016: Parallel Processing Workshops (pp. 480–491). Cham: Springer International Publishing.
  • Grunzke, R., Krüger, J., Jäkel, R., Nagel, W., Herres-Pawlis, S., & Hoffmann, A. (2017). Metadata Management in the MoSGrid Science Gateway - Evaluation and the Expansion of Quantum Chemistry Support. Journal of Grid Computing, 15.
  • Hirmer, P., Waizenegger, T., Falazi, G., Abdo, M., Volga, Y., Askinadze, A., Liebeck, M., et al. (2017). The First Data Science Challenge at BTW 2017. Datenbank-Spektrum, 17.
  • Hoffmann, N., Weidner, F., Urban, P., Meyer, T., Schnabel, C., Radev, Y., Schackert, G., et al. (2017). Framework for 2D-3D image fusion of infrared thermography with preoperative MRI. Biomedical Engineering / Biomedizinische Technik, 62(6), 599–607. Retrieved from https://doi.org/10.1515/bmt-2016-0075
  • Junghanns, M., Kießling, M., Averbuch, A., Petermann, A., & Rahm, E. (2017). Cypher-based graph pattern matching in gradoop. In Proceedings of the Fifth International Workshop on Graph Data-management Experiences & Systems. Chicago IL USA: ACM.
  • Junghanns, M., Petermann, A., Neumann, M., & Rahm, E. (2017). Management and Analysis of Big Graph Data: Current Systems and Open Challenges. In A. Y. Zomaya & S. Sakr (Eds.), Handbook of Big Data Technologies (pp. 457–505). Cham: Springer International Publishing. Retrieved from https://doi.org/10.1007/978-3-319-49340-4_14
  • Junghanns, M., Petermann, A., Teichmann, N., & Rahm, E. (2017). The Big Picture: Understanding large-scale graphs using Graph Grouping with Gradoop. In .
  • Junghanns, M., Petermann, A., & Rahm, E. (2017). Distributed Grouping of Property Graphs with GRADOOP. In Datenbanksysteme für Business, Technologie und Web (BTW 2017) (pp. 103–122). Bonn: Gesellschaft für Informatik, Bonn.
  • Kegel, L., Hahmann, M., & Lehner, W. (2017). Generating What-If Scenarios for Time Series Data. In Proceedings of the 29th International Conference on Scientific and Statistical Database Management, SSDBM ’17. Chicago, IL, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3085504.3085507
  • Kemper, S., Petermann, A., & Junghanns, M. (2017). Distributed FoodBroker: Skalierbare Generierung graphbasierter Geschäftsprozessdaten. In Datenbanksysteme für Business, Technologie und Web (BTW 2017) - Workshopband (pp. 105–110). Bonn: Gesellschaft für Informatik e.V.
  • Khorandi, S. M., Ghiasvand, S., & Sharifi, M. (2017). Reducing Load Imbalance of Virtual Clusters via Reconfiguration and Adaptive Job Scheduling. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID) (pp. 992–999). Madrid, Spain: IEEE. Retrieved from http://ieeexplore.ieee.org/document/7973807/
  • Kister, U., Klamka, K., Tominski, C., & Dachselt, R. (2017). GraSp : Combining Spatially-aware Mobile Devices and a Display Wall for Graph Visualization and Interaction. Computer Graphics Forum, 36, 503–514.
  • Knutzen, F., Averbeck, P., Barrasso, C., Bouwer, L. M., Gardiner, B., Grünzweig, J. M., Hänel, S., et al. (2023). Impacts and damages of the European multi-year drought and heat event 2018–2022 on forests, a review.
  • Koci, E., Thiele, M., Romero, O., & Lehner, W. (2017). Table Identification and Reconstruction in Spreadsheets. In (pp. 527–541).
  • Kothiwale, S., Borza, C., Pozzi, A., & Meiler, J. (2017). Quantitative Structure–Activity Relationship Modeling of Kinase Selectivity Profiles. Molecules, 22(9), 1576. MDPI AG. Retrieved from http://dx.doi.org/10.3390/molecules22091576
  • Kricke, M., Grimmer, M., Junghanns, M., Peukert, E., & Rahm, E. (2017). Data-Science-Challenge: Graph-based analysis and demand prediction for bike rentals.
  • Kricke, M., Grimmer, M., & Schmeißer, M. (2017). Preserving Recomputability of Results from Big Data Transformation Workflows: Depending on External Systems and Human Interactions. Datenbank-Spektrum, 17.
  • Kricke, M., Grimmer, M., & Schmeißer, M. (2017). Preserving recomputability of results from big data transformation workflows. Datenbank Spektrum, 17(3), 245–253. Springer Nature.
  • Leger, S., Löck, S., Hietschold, V., Haase, R., Böhme, H. J., & Abolmaali, N. (2017). Physical correction model for automatic correction of intensity non-uniformity in magnetic resonance imaging. Physics and Imaging in Radiation Oncology, 4, 32–38. Elsevier.
  • Nardini, P., Böttinger, M., Scheuermann, G., & Schmidt, M. (2017). Visual Study of the Benguela Upwelling System using Pathline Predicates . In K. Rink, A. Middel, D. Zeckzer, & R. Bujack (Eds.), Workshop on Visualisation in Environmental Sciences (EnvirVis). The Eurographics Association.
  • Nentwig, M., Groß, A., Möller, M., & Rahm, E. (2017). Distributed Holistic Clustering on Linked Data. CoRR, abs/1708.09299. Retrieved from http://arxiv.org/abs/1708.09299
  • Petermann, A. (2017). Graph Pattern Mining for Business Decision Support. In PhD@VLDB. Retrieved from https://api.semanticscholar.org/CorpusID:9903644
  • Petermann, A., Junghanns, M., & Rahm, E. (2017). DIMSpan - Transactional Frequent Subgraph Mining with Distributed In-Memory Dataflow Systems. CoRR, abs/1703.01910. Retrieved from http://arxiv.org/abs/1703.01910
  • Petermann, A., Micale, G., Bergami, G., Pulvirenti, A., & Rahm, E. (2017). Mining and ranking of generalized multi-dimensional frequent subgraphs. In .
  • Pretzsch, F. (2017). Duplikaterkennung in der Graph-Processing-Platform GRADOOP. In B. Mitschang, N. Ritter, H. Schwarz, M. Klettke, A. Thor, O. Kopp, & M. Wieland (Eds.), Datenbanksysteme für Business, Technologie und Web (BTW 2017), 17. Fachtagung des GI-Fachbereichs ,,Datenbanken und Informationssysteme" (DBIS), 6.-10. März 2017, Stuttgart, Germany, Workshopband, LNI (Vol. P-266, pp. 321–333). GI. Retrieved from https://dl.gi.de/handle/20.500.12116/928
  • Raith, F., Röber, N., Haak, H., & Scheuermann, G. (2017). Visual Eddy Analysis of the Agulhas Current. In .
  • Saeedi, A., Peukert, E., & Rahm, E. (2017). Comparative Evaluation of Distributed Clustering Schemes for Multi-source Entity Resolution. In Symposium on Advances in Databases and Information Systems. Retrieved from https://api.semanticscholar.org/CorpusID:2571419
  • Sastri, Y., Feldhoff, K., Starruss, J., Jäkel, R., & Müller-Pfefferkorn, R. (2017). A Workflow for the Integral Performance Analysis of Cloud Applications Using Monitoring and Tracing Techniques. In Proceedings of the 2017 International Conference on Cloud and Big Data Computing, ICCBDC 2017 (pp. 73–78). London, United Kingdom: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3141128.3141132
  • Schlesinger, D., Jug, F., Myers, G., Rother, C., & Kainmüller, D. (2017). Crowd Sourcing Image Segmentation with iaSTAPLE. CoRR, abs/1702.06461. Retrieved from http://arxiv.org/abs/1702.06461
  • Sodoge, J., Kuhlicke, C., Mahecha, M. D., & de Brito, M. M. (2024). Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany. Natural Hazards and Earth System Sciences, 24(5), 1757–1777. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/nhess-24-1757-2024
  • Spangenberg, N., Augenstein, C., Franczyk, B., Wagner, M., Apitz, M., & Kenngott, H. (2017). Method for Intra-Surgical Phase Detection by Using Real-Time Medical Device Data. In (pp. 254–259).
  • Spangenberg, N., Wilke, M., & Franczyk, B. (2017). A Big Data architecture for intra-surgical remaining time predictions. Procedia Computer Science, 113, 310–317.
  • Staib, J., Grottel, S., & Gumhold, S. (2017). Temporal Focus+Context for Clusters in Particle Data . In M. Hullin, R. Klein, T. Schultz, & A. Yao (Eds.), Vision, Modeling & Visualization. The Eurographics Association.
  • Swoboda, O. (2017). Serverseitige Aggregation von Zeitreihendaten in verteilten NoSQL-Datenbanken. In Datenbanksysteme für Business, Technologie und Web (BTW 2017) - Workshopband (pp. 365–374). Bonn: Gesellschaft für Informatik e.V.
  • Tiepmar, J. (2015). Release of the MySQL based implementation of the CTS protocol. In P. Ba≈Ñski, H. Biber, E. Breiteneder, M. Kupietz, H. Lüngen, & A. Witt (Eds.), Proceedings of the 3rd Workshop on Challenges in the Management of Large Corpora (CMLC-3), Lancaster, 20 July 2015, Proceedings of the 3rd Workshop on Challenges in the Management of Large Corpora (CMLC-3), Lancaster, 20 July 2015 (pp. 35–43). Mannheim: Institut für Deutsche Sprache. Retrieved from https://nbn-resolving.org/urn:nbn:de:bsz:mh39-38374
  • Tiepmar, J., Eckart, T., Goldhahn, D., & Kuras, C. (2017). Integrating Canonical Text Services into CLARIN’s Search Infrastructure. Linguistics and Literature Studies, 5, 99–104.
  • Tiepmar, J., & Heyer, G. (2017). An Overview of Canonical Text Services. Linguistics and Literature Studies, 5, 132–148.
  • Torge, S., Jäkel, R., Schlesinger, D., & Frenzel, M. (2017). Deep Learning and High Performance Computing.
  • Ulbricht, M. (2021). On the maximal number of complete extensions in abstract argumentation frameworks. In Proceedings of the Eighteenth International Conference on Principles of Knowledge Representation and Reasoning. Hanoii, Vietnam: International Joint Conferences on Artificial Intelligence Organization.
  • Vatsalan, D., Sehili, Z., Christen, P., & Rahm, E. (2017). Privacy-Preserving Record Linkage for Big Data: Current Approaches and Research Challenges. In Handbook of Big Data Technologies.
  • Völske, M., Potthast, M., Syed, S., & Stein, B. (2017). TL;DR: Mining Reddit to Learn Automatic Summarization. In L. Wang, J. C. K. Cheung, G. Carenini, & F. Liu (Eds.), Proceedings of the Workshop on New Frontiers in Summarization, NFiS@EMNLP 2017, Copenhagen, Denmark, September 7, 2017 (pp. 59–63). Association for Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/w17-4508
  • Volke, S., Zeckzer, D., Middendorf, M., & Scheuermann, G. (2017). Visualizing Topological Properties of the Search Landscape of Combinatorial Optimization Problems. In (pp. 69–85).
  • von Zadow, U., & Dachselt, R. (2017). GIAnT: Visualizing Group Interaction at Large Wall Displays. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17 (pp. 2639–2647). Denver, Colorado, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3025453.3026006
  • Vrandev ci’c, D., Pintscher, L., & Krötzsch, M. (2023). Wikidata: The Making Of. In Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, & G.-J. Houben (Eds.), Companion Proceedings of the ACM Web Conference 2023 (WWW’23) (pp. 615–624). United States of America: Association for Computing Machinery (ACM), New York.
  • Wiegreffe, D., Hausdorf, A., Zänker, S., & Zeckzer, D. (2017). iDotter – an interactive dot plot viewer. In .
  • Xavier, L. C. P., da Silva, S. M. O., Carvalho, T. M. N., Filho, J. D. P., & de Assis de Souza Filho, F. (2020). Use of Machine Learning in Evaluation of Drought Perception in Irrigated Agriculture: The Case of an Irrigated Perimeter in Brazil. Water, 12(6), 1546. Multidisciplinary Digital Publishing Institute.
  • Yazbeck, A., Tout, K., Stadler, P., & Schor, J. (2017). Towards a Consistent, Quantitative Evaluation of MicroRNA Evolution. Journal of Integrative Bioinformatics, 14.
  • Zschaeck, S., Löck, S., Leger, S., Haase, R., Bandurska-Luque, A., Appold, S., Kotzerke, J., et al. (2017). FDG uptake in normal tissues assessed by PET during treatment has prognostic value for treatment results in head and neck squamous cell carcinomas undergoing radiochemotherapy. Radiotherapy and Oncology, 122(3), 437–444. Elsevier.
funded by:
Gefördert vom Bundesministerium für Bildung und Forschung.
Gefördert vom Freistaat Sachsen.