JavaScript is required to use this site. Please enable JavaScript in your browser settings.

2019

  • Abdelkawi, A., Zafar, H., Maleshkova, M., & Lehmann, J. (2019). Complex query augmentation for question answering over knowledge graphs. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 571–587). Cham: Springer International Publishing.
  • Ajjour, Y., Wachsmuth, H., Kiesel, J., Potthast, M., Hagen, M., & Stein, B. (2019). Data Acquisition for Argument Search: The args.me Corpus. In KI 2019: Advances in Artificial Intelligence (pp. 48–59). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-030-30179-8_4
  • Ali, M., Hoyt, C., Domingo-Fernández, D., & Lehmann, J. (2019, August). Predicting Missing Links Using PyKEEN.
  • Ali, M., Hoyt, C. T., Domingo-Fernández, D., Lehmann, J., & Jabeen, H. (2019). BioKEEN: a library for learning and evaluating biological knowledge graph embeddings. Bioinformatics, 35(18), 3538–3540.
  • Ali, M., Jabeen, H., Hoyt, C. T., & Lehmann, J. (2019). The KEEN universe. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 3–18). Cham: Springer International Publishing.
  • Ali, M., Jabeen, H., Hoyt, C. T., & Lehmann, J. (2019). The KEEN Universe: An Ecosystem for Knowledge Graph Embeddings with a Focus on Reproducibility and Transferability. In The Semantic Web – ISWC 2019 (pp. 3–18). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-030-30796-7_1
  • Alshomary, M., Völske, M., Licht, T., Wachsmuth, H., Stein, B., Hagen, M., & Potthast, M. (2019). Wikipedia Text Reuse: Within and Without. In Advances in Information Retrieval (pp. 747–754). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-030-15712-8_49
  • Athanasiou, S., Giorgos, G., Damien, G., Nikos, K., Jens, L., Ngonga Ngomo, A.-C., Kostas, P., et al. (2019). Big POI data integration with Linked Data technologies. In International Conference on Extending Database Technology 2019, EDBT19. Retrieved from http://svn.aksw.org/papers/2019/EDBT_SLIPO/public.pdf
  • Baader, F. (2019). Expressive cardinality restrictions on concepts in a description logic with expressive number restrictions. ACM SIGAPP Appl. Comput. Rev., 19(3), 5–17. Association for Computing Machinery (ACM).
  • Baader, F. (2019). Expressive cardinality constraints on textitALCSCC concepts. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. Limassol Cyprus: ACM.
  • Baader, F., Bednarczyk, B., & Rudolph, S. (2019). Satisfiability Checking and Conjunctive Query Answering in Description Logics with Global and Local Cardinality Constraints. Computational Logic Group.
  • Baader, F., & De Bortoli, F. (2019). On the expressive power of description logics with cardinality constraints on finite and infinite sets. In Frontiers of Combining Systems, Lecture notes in computer science (pp. 203–219). Cham: Springer International Publishing.
  • Baader, F., & Nuradiansyah, A. (2019). Mixing description logics in privacy-preserving ontology publishing. In KI 2019: Advances in Artificial Intelligence, Lecture notes in computer science (pp. 87–100). Cham: Springer International Publishing.
  • Bandurska-Luque, A., Löck, S., Haase, R., Richter, C., Zöphel, K., Abolmaali, N., Seidlitz, A., et al. (2019). FMISO-PET-based lymph node hypoxia adds to the prognostic value of tumor only hypoxia in HNSCC patients. Radiotherapy and Oncology, 130, 97–103. Elsevier.
  • Bandurska-Luque, A., Löck, S., Haase, R., Richter, C., Zöphel, K., Perrin, R., Appold, S., et al. (2019). Correlation between FMISO-PET based hypoxia in the primary tumour and in lymph node metastases in locally advanced HNSCC patients. Clinical and translational radiation oncology, 15, 108–112. Elsevier.
  • Baumann, R., & Brewka, G. (2019). Extension removal in abstract argumentation -- an axiomatic approach. Proc. Conf. AAAI Artif. Intell., 33(01), 2670–2677. Association for the Advancement of Artificial Intelligence (AAAI).
  • Bednarczyk, B., & Rudolph, S. (2019). Worst-case optimal querying of very expressive description logics with path expressions and succinct counting. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao, China: International Joint Conferences on Artificial Intelligence Organization.
  • Berchuck, S. I., Janko, M., Medeiros, F. A., Pan, W., & Mukherjee, S. (2019). Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces. Retrieved from https://arxiv.org/abs/1911.04337
  • Beuchel, C., Becker, S., Dittrich, J., Kirsten, H., Toenjes, A., Stumvoll, M., Loeffler, M., et al. (2019). Clinical and lifestyle related factors influencing whole blood metabolite levels - A comparative analysis of three large cohorts. Mol. Metab., 29, 76–85. Elsevier BV.
  • Bevendorff, J., Hagen, M., Stein, B., & Potthast, M. (2019). Bias Analysis and Mitigation in the Evaluation of Authorship Verification. In A. Korhonen, D. Traum, & L. Màrquez (Eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 6301–6306). Florence, Italy: Association for Computational Linguistics. Retrieved from https://aclanthology.org/P19-1634
  • Bevendorff, J., Potthast, M., Hagen, M., & Stein, B. (2019). Heuristic Authorship Obfuscation. In A. Korhonen, D. Traum, & L. Màrquez (Eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 1098–1108). Florence, Italy: Association for Computational Linguistics. Retrieved from https://aclanthology.org/P19-1104
  • Bevendorff, J., Stein, B., Hagen, M., & Potthast, M. (2019). Generalizing Unmasking for Short Texts. In J. Burstein, C. Doran, & T. Solorio (Eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (pp. 654–659). Minneapolis, Minnesota: Association for Computational Linguistics. Retrieved from https://aclanthology.org/N19-1068
  • Bodnar, T., Okhrin, O., & Parolya, N. (2019). Optimal shrinkage estimator for high-dimensional mean vector. J. Multivar. Anal., 170, 63–79. Elsevier BV.
  • Böttcher, B., Keller-Ressel, M., & Schilling, R. L. (2019). Distance multivariance: New dependence measures for random vectors. Ann. Stat., 47(5), 2757–2789. Institute of Mathematical Statistics.
  • Bossek, J., Kerschke, P., Neumann, A., Wagner, M., Neumann, F., & Trautmann, H. (2019). Evolving diverse TSP instances by means of novel and creative mutation operators. In Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. Potsdam Germany: ACM.
  • Brewka, G., Pührer, J., & Woltran, S. (2019). Multi-valued GRAPPA. In Logics in Artificial Intelligence, Lecture notes in computer science (pp. 85–101). Cham: Springer International Publishing.
  • Brewka, G., Thimm, M., & Ulbricht, M. (2019). Strong inconsistency. Artif. Intell., 267, 78–117. Elsevier BV.
  • Brewka, G., & Ulbricht, M. (2019). Strong explanations for nonmonotonic reasoning. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 135–146). Cham: Springer International Publishing.
  • Burek, P., Scherf, N., & Herre, H. (2019). Ontology patterns for the representation of quality changes of cells in time. J. Biomed. Semantics, 10(1), 16. Springer Science and Business Media LLC.
  • Burek, P., Scherf, N., & Herre, H. (2019). A pattern-based approach to a cell tracking ontology. Procedia Comput. Sci., 159, 784–793. Elsevier BV.
  • Carvalho, T. M. N. (2019). Water demand modeling using machine learning techniques.
  • Carvalho, T., Filho, F. S., Porto, V., Reis, G., & Rolim, L. (2019). Integrated model of capacity expansion and operation of water supply systems including non-conventional water sources.
  • Casalicchio, G., Bossek, J., Lang, M., Kirchhoff, D., Kerschke, P., Hofner, B., Seibold, H., et al. (2019). OpenML: An R package to connect to the machine learning platform OpenML. Comput. Stat., 34(3), 977–991. Springer Science and Business Media LLC.
  • Chakraborty, N., Lukovnikov, D., Maheshwari, G., Trivedi, P., Lehmann, J., & Fischer, A. (2019). Introduction to neural network based approaches for question answering over knowledge graphs. arXiv.
  • Chau, M. T., Esteves, D., & Lehmann, J. (2019). Open-domain event extraction and embedding for natural gas market prediction. arXiv.
  • Chaudhuri, D., Rony, M. R. A. H., Jordan, S., & Lehmann, J. (2019). Using a KG-copy network for non-goal oriented dialogues. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 93–109). Cham: Springer International Publishing.
  • Chawla, P., Esteves, D., Pujar, K., & Lehmann, J. (2019). SimpleLSTM: A deep-learning approach to simple-claims classification. In Progress in Artificial Intelligence, Lecture notes in computer science (pp. 244–255). Cham: Springer International Publishing.
  • Dadwal, R., Graux, D., Sejdiu, G., Jabeen, H., & Lehmann, J. (2019). Clustering pipelines of large RDF POI data. In The Semantic Web: ESWC 2019 Satellite Events, Lecture notes in computer science (pp. 24–27). Cham: Springer International Publishing.
  • Daelemans, W., Kestemont, M., Manjavacas, E., Potthast, M., Rangel, F., Rosso, P., Specht, G., et al. (2019). Overview of PAN 2019: Bots and Gender Profiling, Celebrity Profiling, Cross-Domain Authorship Attribution and Style Change Detection. In Experimental IR Meets Multilinguality, Multimodality, and Interaction (pp. 402–416). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-030-28577-7_30
  • de Back, W., Seurig, S., Wagner, S., Marré, B., Roeder, I., & Scherf, N. (2019). Forensic age estimation with Bayesian convolutional neural networks based on panoramic dental X-ray imaging. Retrieved from https://openreview.net/forum?id=SkesoBY49E
  • Deng, C.-S., & Schilling, R. L. (2019). Exact asymptotic formulas for the heat kernels of space and time-fractional equations. Fract. Calc. Appl. Anal., 22(4), 968–989. Springer Science and Business Media LLC.
  • Dubey, M., Banerjee, D., Abdelkawi, A., & Lehmann, J. (2019). LC-QuAD 2.0: A large dataset for complex question answering over wikidata and DBpedia. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 69–78). Cham: Springer International Publishing.
  • Ebert, M. P., Meindl-Beinker, N. M., Gutting, T., Maenz, M., Betge, J., Schulte, N., Zhan, T., et al. (2022). Second-line therapy with nivolumab plus ipilimumab for older patients with oesophageal squamous cell cancer (RAMONA): a multicentre, open-label phase 2 trial. Lancet Healthy Longev., 3(6), e417-e427. Elsevier BV.
  • Ertel, S., Adam, J., Rink, N. A., Goens, A., & Castrillon, J. (2019). STCLang: state thread composition as a foundation for monadic dataflow parallelism. In Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell. Berlin Germany: ACM.
  • Flegel, T., Neumann, A., Holst, A.-L., Kretzschmann, O., Loderstedt, S., Tästensen, C., Gutmann, S., et al. (2024). Machine learning algorithms predict canine structural epilepsy with high accuracy. Frontiers in Veterinary Science, 11. Retrieved from https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2024.1406107
  • Franczyk, B., Roth, M., Spangenberg, N., & Mutke, S. (2019). Big Data in der Logistik. Factory Innovation--Agil und smart mit Industrie 4.0. GITO mbH Verlag für Industrielle Informationstechnik und Organisation~….
  • Franke, M., Gladbach, M., Sehili, Z., Rohde, F., & Rahm, E. (2019). ScaDS research on scalable privacy-preserving record linkage. Datenbank Spektrum, 19(1), 31–40. Springer Science and Business Media LLC.
  • Franke, M., Sehili, Z., & Rahm, E. (2019). PRIMAT. Proceedings VLDB Endowment, 12(12), 1826–1829. Association for Computing Machinery (ACM).
  • Frey, J., Hofer, M., Obraczka, D., Lehmann, J., & Hellmann, S. (2019). DBpedia FlexiFusion the best of Wikipedia > wikidata > your data. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 96–112). Cham: Springer International Publishing.
  • Frey, M., Tanni, S., Perrodin, C., O’Leary, A., Nau, M., Kelly, J., Banino, A., et al. (2019, December). Interpreting wide-band neural activity using convolutional neural networks. bioRxiv.
  • Fröbe, M., Günther, S., Probst, M., Potthast, M., & Hagen, M. (2022). Webis-MS-MARCO-Anchor-Texts-22. Zenodo.
  • Gärtner, F., & Stadler, P. F. (2019). Direct superbubble detection. Algorithms, 12(4), 81. MDPI AG.
  • Ganter, B., Rudolph, S., & Stumme, G. (2019). Explaining data with formal concept analysis. In Reasoning Web. Explainable Artificial Intelligence, Lecture notes in computer science (pp. 153–195). Cham: Springer International Publishing.
  • Garcia, L. P. F., Lehmann, J., de Carvalho, A. C. P. L. F., & Lorena, A. C. (2019). New label noise injection methods for the evaluation of noise filters. Knowl. Based Syst., 163, 693–704. Elsevier BV.
  • Ghiasvand, S. (2019). uPAD: Unsupervised Privacy-Aware Anomaly Detection in High Performance Computing Systems:. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (pp. 852–859). Prague, Czech Republic: SCITEPRESS - Science and Technology Publications. Retrieved from http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007582208520859
  • Ghiasvand, S. (2019). UPAD: Unsupervised privacy-aware anomaly detection in high performance computing systems. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods. Prague, Czech Republic: SCITEPRESS - Science and Technology Publications.
  • Ghiasvand, S., & Ciorba, F. M. (2019). Anomaly detection in high performance computers: A vicinity perspective. In 2019 18th International Symposium on Parallel and Distributed Computing (ISPDC). Amsterdam, Netherlands: IEEE.
  • Ghiasvand, S., & Ciorba, F. M. (2019). Anomaly Detection in High Performance Computers: A Vicinity Perspective. In 2019 18th International Symposium on Parallel and Distributed Computing (ISPDC) (pp. 112–120). Amsterdam, Netherlands.
  • Ghor, T. A., Agrawal, E., Alam, M., Alqawasmeh, O., D’amato, C., Annane, A., Azzam, A., et al. (2019). Linked Open Data validity -- A technical report from ISWS 2018. arXiv.
  • Gocht, A., Lehmann, C., & Schöne, R. (2019). Text/Conference Paper. Gesellschaft für Informatik e.V.
  • Goens, A., Brauckmann, A., Ertel, S., Cummins, C., Leather, H., & Castrillon, J. (2019). A case study on machine learning for synthesizing benchmarks. In Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. Phoenix AZ USA: ACM.
  • Grimme, C., Kerschke, P., & Trautmann, H. (2019). Multimodality in multi-objective optimization -- more boon than bane?. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 126–138). Cham: Springer International Publishing.
  • Grimmer, M., Röhling, M. M., Kreußel, D., & Ganz, S. (2019). A Modern and Sophisticated Host Based Intrusion Detection Data Set. In . Retrieved from https://api.semanticscholar.org/CorpusID:216077392
  • Gupta, A., Günther, U., Incardona, P., Aydin, A. D., Dachselt, R., Gumhold, S., & Sbalzarini, I. F. (2019). A Proposed Framework for Interactive Virtual Reality In Situ Visualization of Parallel Numerical Simulations. In 2019 IEEE 9th Symposium on Large Data Analysis and Visualization (LDAV) (pp. 95–96).
  • Hahmann, M., Hartmann, C., Kegel, L., & Lehner, W. (2019). Large-scale time series analytics. Datenbank Spektrum, 19(1), 17–29. Springer Science and Business Media LLC.
  • Heindorf, S., Scholten, Y., Engels, G., & Potthast, M. (2019). Debiasing Vandalism Detection Models at Wikidata. In The World Wide Web Conference, WWW ’19 (pp. 670–680). San Francisco, CA, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3308558.3313507
  • Heyer, G., & Tiepmar, J. (2019). A big data case study in digital humanities. Datenbank Spektrum, 19(1), 41–49. Springer Science and Business Media LLC.
  • Ibrahim, S., Fathalla, S., Shariat Yazdi, H., Lehmann, J., & Jabeen, H. (2019). From monolingual to multilingual ontologies: The role of cross-lingual ontology enrichment. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 215–230). Cham: Springer International Publishing.
  • Ibrahim, S., Fathalla, S., Yazdi, H. S., Lehmann, J., & Jabeen, H. (2019). OECM: A cross-lingual approach for ontology enrichment. In The Semantic Web: ESWC 2019 Satellite Events, Lecture notes in computer science (pp. 100–104). Cham: Springer International Publishing.
  • Jabeen, H., Tahara, N., & Lehmann, J. (2019). EvoChef: Show me what to cook! Artificial evolution of culinary arts. In Computational Intelligence in Music, Sound, Art and Design, Lecture notes in computer science (pp. 156–172). Cham: Springer International Publishing.
  • Jawinski, P., Kirsten, H., Sander, C., Spada, J., Ulke, C., Huang, J., Burkhardt, R., et al. (2019). Human brain arousal in the resting state: a genome-wide association study. Mol. Psychiatry, 24(11), 1599–1609. Springer Science and Business Media LLC.
  • Kaltenecker, C., Grebhahn, A., Siegmund, N., Guo, J., & Apel, S. (2019). Distance-based sampling of software configuration spaces. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). Montreal, QC, Canada: IEEE.
  • Kassawat, F., Chaudhuri, D., & Lehmann, J. (2019). Incorporating joint embeddings into goal-oriented dialogues with multi-task learning. In The Semantic Web, Lecture notes in computer science (pp. 225–239). Cham: Springer International Publishing.
  • Kaune, T., Hollenbach, M., Keil, B., Chen, J.-M., Masson, E., Becker, C., Damm, M., et al. (2019). Common variants in glyoxalase I do not increase chronic pancreatitis risk. PLoS One, 14(10), e0222927. Public Library of Science (PLoS).
  • Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A. H., Trautmann, H., & Emmerich, M. T. M. (2019). Search dynamics on multimodal multiobjective problems. Evol. Comput., 27(4), 577–609. MIT Press - Journals.
  • Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated algorithm selection: Survey and perspectives. Evol. Comput., 27(1), 3–45. MIT Press.
  • Kerschke, P., & Preuss, M. (2019). Exploratory landscape analysis. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’19 (pp. 1137–1155). Prague, Czech Republic: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3319619.3323389
  • Kerschke, P., & Trautmann, H. (2019). Automated algorithm selection on continuous black-box problems by combining Exploratory Landscape Analysis and machine learning. Evol. Comput., 27(1), 99–127. MIT Press.
  • Kestemont, M., Stamatatos, E., Manjavacas, E., Daelemans, W., Potthast, M., & Stein, B. (2019). Overview of the Cross-domain Authorship Attribution Task at PAN 2019. In Conference and Labs of the Evaluation Forum. Retrieved from https://api.semanticscholar.org/CorpusID:198489009
  • Kheifetz, Y., & Scholz, M. (2019). Modeling individual time courses of thrombopoiesis during multi-cyclic chemotherapy. (G. Tucker-Kellogg, Ed.)PLOS Computational Biology, 15(3), e1006775. Public Library of Science (PLoS). Retrieved from http://dx.doi.org/10.1371/journal.pcbi.1006775
  • Kiesel, J., Hubricht, F., Stein, B., & Potthast, M. (2019). A Dataset for Content Error Detection in Web Archives. In M. Bonn, S. J. Downie, A. Martaus, & D. Wu (Eds.), 18th ACM/IEEE Joint Conference on Digital Libraries (JCDL 2019) (pp. 349–350). ACM.
  • Kiesel, J., Mestre, M., Shukla, R., Vincent, E., Adineh, P., Corney, D., Stein, B., et al. (2019). SemEval-2019 Task 4: Hyperpartisan News Detection. In Proceedings of the 13th International Workshop on Semantic Evaluation (pp. 349–350). Association for Computational Linguistics. Retrieved from http://dx.doi.org/10.18653/v1/S19-2145
  • Knutzen, F., Averbeck, P., Barrasso, C., Bouwer, L. M., Gardiner, B., Grünzweig, J. M., Hänel, S., et al. (2023). Impacts and damages of the European multi-year drought and heat event 2018–2022 on forests, a review.
  • Koci, E., Kuban, D., Luettig, N., Olwig, D., Thiele, M., Gonsior, J., Lehner, W., et al. (2019). Xlindy: Interactive recognition and information extraction in spreadsheets. In Proceedings of the ACM Symposium on Document Engineering 2019. Berlin Germany: ACM.
  • Koci, E., Thiele, M., Rehak, J., Romero, O., & Lehner, W. (2019). DECO: A dataset of annotated spreadsheets for layout and table recognition. In 2019 International Conference on Document Analysis and Recognition (ICDAR). Sydney, Australia: IEEE.
  • Körner, E., Heyer, G., & Potthast, M. (2019). Same Side Stance Classification Using Contextualized Sentence Embeddings, 21–25.
  • Kricke, M., Peukert, E., & Rahm, E. (2019). Graph Data Transformations in Gradoop. Gesellschaft für Informatik, Bonn.
  • Kristiadi, A., Khan, M. A., Lukovnikov, D., Lehmann, J., & Fischer, A. (2019). Incorporating literals into knowledge graph embeddings. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 347–363). Cham: Springer International Publishing.
  • Krötzsch, M., Marx, M., & Rudolph, S. (2019). The power of the terminating chase (invited talk). In . Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany.
  • Kühn, F., & Schilling, R. L. (2019). Strong convergence of the Euler--Maruyama approximation for a class of Lévy-driven SDEs. Stoch. Process. Their Appl., 129(8), 2654–2680. Elsevier BV.
  • Kühne, S., Scheller, F., Kondziella, H., Reichelt, D. G., & Bruckner, T. (2019). Decision support system for municipal energy utilities: Approach, architecture, and implementation. Chem. Eng. Technol., 42(9), 1914–1922. Wiley.
  • Lauber-Rönsberg, A. (2019). Autonome „Schöpfung “--Urheberschaft und Schutzfähigkeit. Gewerblicher Rechtschutz und Urheberrecht (GRUR), 121(3), 244–253.
  • Lauber-Rönsberg, A., & Hetmank, S. (2019). The concept of authorship and inventorship under pressure: Does artificial intelligence shift paradigms?. J. Intellect. Prop. Law Pract., 14(7), 570–579. Oxford University Press (OUP).
  • Lorena, A. C., Garcia, L. P. F., Lehmann, J., Souto, M. C. P., & Ho, T. K. (2019). How Complex Is Your Classification Problem?: A Survey on Measuring Classification Complexity. ACM Computing Surveys, 52(5), 1–34. Association for Computing Machinery (ACM). Retrieved from http://dx.doi.org/10.1145/3347711
  • Lukovnikov, D., Fischer, A., & Lehmann, J. (2019). Pretrained transformers for simple question answering over knowledge graphs. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 470–486). Cham: Springer International Publishing.
  • Lux, M., Halvorsen, P., Dang-Nguyen, D.-T., Stensland, H., Kesavulu, M., Potthast, M., & Riegler, M. (2019). Summarizing E-sports matches and tournaments: the example of counter-strike: global offensive. In Proceedings of the 11th ACM Workshop on Immersive Mixed and Virtual Environment Systems, MMSys ’19 (Vol. 4, pp. 13–18). ACM. Retrieved from http://dx.doi.org/10.1145/3304113.3326116
  • Maddu, S., Cheeseman, B. L., Sbalzarini, I. F., & Müller, C. L. (2019). Stability selection enables robust learning of partial differential equations from limited noisy data. arXiv. Retrieved from https://arxiv.org/abs/1907.07810
  • Maheshwari, G., Trivedi, P., Lukovnikov, D., Chakraborty, N., Fischer, A., & Lehmann, J. (2019). Learning to rank query graphs for complex question answering over knowledge graphs. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 487–504). Cham: Springer International Publishing.
  • Maiwald, F., Bruschke, J., Lehmann, C., & Niebling, F. (2019). A 4D information system for the exploration of multitemporal images and maps using photogrammetry, web technologies and VR/AR. Virtual Archaeology Review, 10(21), 1–13.
  • Mami, M. N., Graux, D., Scerri, S., Jabeen, H., Auer, S., & Lehmann, J. (2019). Squerall: Virtual ontology-based access to heterogeneous and large data sources. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 229–245). Cham: Springer International Publishing.
  • Mami, M. N., Graux, D., Scerri, S., Jabeen, H., Auer, S., & Lehmann, J. (2019). How to feed the squerall with RDF and other data nuts?. Aachen, Germany : RWTH Aachen.
  • Mami, M. N., Graux, D., Scerri, S., Jabeen, H., Auer, S., & Lehmann, J. (2019). Uniform access to multiform data lakes using semantic technologies. In Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services. Munich Germany: ACM.
  • Mami, M. N., Graux, D., Thakkar, H., Scerri, S., Auer, S., & Lehmann, J. (2019). The query translation landscape: A survey. arXiv.
  • Maqbool, F., Razzaq, S., Lehmann, J., & Jabeen, H. (2019). Scalable distributed genetic algorithm using Apache spark (S-GA). In Intelligent Computing Theories and Application, Lecture notes in computer science (pp. 424–435). Cham: Springer International Publishing.
  • Mayr, C., Hoeppner, S., & Furber, S. (2019). SpiNNaker 2: A 10 Million core processor system for brain simulation and machine learning. arXiv.
  • McGoff, K., Mukherjee, S., & Nobel, A. (2019). Gibbs posterior convergence and the thermodynamic formalism. Retrieved from https://arxiv.org/abs/1901.08641
  • Mehmood, Q., Nadgeri, A., Saleem, M., Singh, K., Ngonga Ngomo, A.-C., & Lehmann, J. (2019). Microbenchmarks for question answering systems using QAldGeN. Retrieved from https://publica.fraunhofer.de/handle/publica/410809
  • Muhlbauer, S., Apel, S., & Siegmund, N. (2019). Accurate modeling of performance histories for evolving software systems. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). San Diego, CA, USA: IEEE.
  • Mulang’, I. O., Singh, K., Vyas, A., Shekarpour, S., Sakor, A., Vidal, M.-E., Auer, S., et al. (2019). Context-aware Entity Linking with Attentive Neural Networks on Wikidata Knowledge Graph. CoRR, abs/1912.06214. Retrieved from http://arxiv.org/abs/1912.06214
  • Mulang, I. O., Singh, K., Vyas, A., Shekarpour, S., Vidal, M. E., Lehmann, J., & Auer, S. (2019). Encoding knowledge graph entity aliases in attentive neural network for Wikidata Entity Linking. arXiv.
  • Nayyeri, M., Xu, C., Yaghoobzadeh, Y., Yazdi, H. S., & Lehmann, J. (2019). On the Knowledge Graph Completion Using Translation Based Embedding: The Loss Is as Important as the Score. ArXiv, abs/1909.00519.
  • Nayyeri, M., Zhou, X., Vahdati, S., Yazdi, H. S., & Lehmann, J. (2019). Adaptive Margin Ranking Loss for Knowledge Graph Embeddings via a Correntropy Objective Function. ArXiv, abs/1907.05336.
  • Nayyeri, M., Vahdati, S., Lehmann, J., & Yazdi, H. S. (2019). Soft marginal TransE for scholarly knowledge graph completion. arXiv.
  • Nayyeri, M., Xu, C., Lehmann, J., & Yazdi, H. S. (2019). LogicENN: A neural based knowledge graphs embedding model with logical rules. arXiv.
  • Ni, C.-C., Lin, Y.-Y., Luo, F., & Gao, J. (2019). Community Detection on Networks with Ricci Flow. Retrieved from https://arxiv.org/abs/1907.03993
  • Obraczka, D., Saeedi, A., & Rahm, E. (2019). Knowledge graph completion with FAMER. Proc. DI2KG.
  • Ozaki, A., Krötzsch, M., & Rudolph, S. (2019). Temporally Attributed Description Logics. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 441–474). Cham: Springer International Publishing.
  • Petersohn, U., Zimmer, S., & Lehmann, J. (2019). Method for the semantic indexing of concept hierarchies, uniform representation, use of relational database systems and generic and case-based reasoning. arXiv.
  • Platow, B. (2019). DSI Insights: KI = Gott?.
  • Porto, V., Filho, F. S., Carvalho, T., Rocha, R., & Frota, R. (2019). Application of stochastic dual dynamic programming in operation optimization of the Jaguaribe-Metropolitano reservoirs system.
  • Pott, J., Bae, Y. J., Horn, K., Teren, A., Kühnapfel, A., Kirsten, H., Ceglarek, U., et al. (2019). Genetic association study of eight steroid hormones and implications for sexual dimorphism of coronary artery disease. J. Clin. Endocrinol. Metab., 104(11), 5008–5023. The Endocrine Society.
  • Potthast, M., Gienapp, L., Euchner, F., Heilenkötter, N., Weidmann, N., Wachsmuth, H., Stein, B., et al. (2019). Argument Search: Assessing Argument Relevance. In 42nd International ACM Conference on Research and Development in Information Retrieval (SIGIR 2019). ACM.
  • Potthast, M., Gollub, T., Wiegmann, M., & Stein, B. (2019). TIRA Integrated Research Architecture. In Information Retrieval Evaluation in a Changing World, SIGIR ’19 (pp. 123–160). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-030-22948-1_5
  • Potthast, M., Rosso, P., Stamatatos, E., & Stein, B. (2019). A Decade of Shared Tasks in Digital Text Forensics at PAN. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, & D. Hiemstra (Eds.), Advances in Information Retrieval. 41st European Conference on IR Research (ECIR 2019), Lecture Notes in Computer Science (Vol. 11438, pp. 291–300). Berlin Heidelberg New York: Springer.
  • Rahimbayli, S., Lehmann, J., & Deserno, T. M. (2019). Pay for Performance in Electronic Data Capture for Clinical Trials and Medical Registries. In ICT for Health Science Research (pp. 221–225). IOS Press.
  • Rahm, E., & Härder, T. (2019). Editorial. Datenbank Spektrum, 19(1), 1–3. Springer Science and Business Media LLC.
  • Rahm, E., Nagel, W. E., Peukert, E., Jäkel, R., Gärtner, F., Stadler, P. F., Wiegreffe, D., et al. (2019). Big Data Competence Center ScaDS Dresden/Leipzig: Overview and selected research activities. Datenbank Spektrum, 19(1), 5–16. Springer Science and Business Media LLC.
  • Reichelt, D. G., Kühne, S., & Hasselbring, W. (2019). On the Validity of Performance Antipatterns at Code Level. In Softwaretechnik-Trends Band 39, Heft 4 (pp. 32–34). Bonn: Gesellschaft für Informatik e.V.
  • Reichelt, D. G., Kuhne, S., & Hasselbring, W. (2019). PeASS: A tool for identifying performance changes at code level. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). San Diego, CA, USA: IEEE.
  • Reichelt, D. G., Meyer, L.-P., & Kühne, S. (2019). Better a Microbenchmark on a Cluster than a User at the Office: Flink Cluster Benchmarking. In U. Kelter (Ed.), Softwaretechnik-Trends Band 39, Heft 3 (pp. 52–54). Bonn: Gesellschaft für Informatik e.V.
  • Reis, G., Filho, F. S., Frota, R., Rolim, L., & Carvalho, T. (2019). Quantifying sensitivity to drought: Study case in São Paulo and Ceará, Brazil.
  • Reis, G., Filho, F. S., Oliveira, T., Rolim, L., & Carvalho, T. (2019). Identification of correlation between residential demand and average income using pool regression model.
  • Reschke, E., & Konrad, U. (2019). Integriertes Management und Publikation von wissenschaftlichen Artikeln, Software und Forschungsdaten am Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Unpublished.
  • Röhling, M. M., Grimmer, M., Kreußel, D., Hoffmann, J., & Franczyk, B. (2019). Standardized container virtualization approach for collecting host intrusion detection data. In Proceedings of the 2019 Federated Conference on Computer Science and Information Systems. IEEE.
  • Rolf, L., Kern-Isberner, G., & Brewka, G. (2019). Argumentation-based explanations for answer sets using ADF. In Logic Programming and Nonmonotonic Reasoning, Lecture notes in computer science (pp. 89–102). Cham: Springer International Publishing.
  • Rolim, L., Filho, F. S., Rocha, R., Reis, G., & Carvalho, T. (2019). Exploring the relationship between climate indices and hydrological time series using a machine learning approach.
  • Rosso, P., Potthast, M., Stein, B., Stamatatos, E., Rangel, F., & Daelemans, W. (2019). Evolution of the PAN Lab on Digital Text Forensics. In Information Retrieval Evaluation in a Changing World (pp. 461–485). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-030-22948-1_19
  • Rost, C., Thor, A., & Rahm, E. (2019). RostPaperBTW. In . Gesellschaft für Informatik, Bonn.
  • Rostami, M. A., Kricke, M., Peukert, E., Kühne, S., Wilke, M., Dienst, S., & Rahm, E. (2019). BIGGR: Bringing gradoop to applications. Datenbank Spektrum, 19(1), 51–60. Springer Science and Business Media LLC.
  • Rostami, M. A., Peukert, E., Wilke, M., & Rahm, E. (2019). 4.-8. März 2019. In . Gesellschaft für Informatik, Bonn.
  • Rudolph, ``johann’’ S. (2019). Presburger Concept Cardinality Constraints in Very Expressive Description Logics. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 542–561). Cham: Springer International Publishing.
  • Rula, A., Palmonari, M., Rubinacci, S., Ngomo, A.-C. N., Lehmann, J., Maurino, A., & Esteves, D. (2019). TISCO: Temporal scoping of facts. Web Semant., 54, 72–86. Elsevier BV.
  • Sadeghi, A., Graux, D., & Lehmann, J. (2019, May). MDE: Multi Distance Embeddings for Link Prediction in Knowledge Graphs.
  • Sadeghi, A., Graux, D., Yazdi, H. S., & Lehmann, J. (2019). MDE: Multiple distance embeddings for link prediction in knowledge graphs. arXiv.
  • Sadeghi, A., & Lehmann, J. (2019). Linking physicians to medical research results via knowledge graph embeddings and Twitter. arXiv.
  • Sakor, A., Mulang’, I. O., Singh, K., Shekarpour, S., Vidal, M. E., Lehmann, J., & Auer, S. (2019). Old is Gold: Linguistic Driven Approach for Entity and Relation Linking of Short Text. In Proceedings of the 2019 Conference of the North. Association for Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/n19-1243
  • Satizabal, C. L., Adams, H. H. H., Hibar, D. P., White, C. C., Knol, M. J., Stein, J. L., Scholz, M., et al. (2019). Genetic architecture of subcortical brain structures in 38,851 individuals. Nat. Genet., 51(11), 1624–1636. Springer Science and Business Media LLC.
  • Sejdiu, G., Graux, D., Khan, I., Lytra, I., Jabeen, H., & Lehmann, J. (2019). Towards a scalable semantic-based distributed approach for SPARQL query evaluation. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 295–309). Cham: Springer International Publishing.
  • Sejdiu, G., Rula, A., Lehmann, J., & Jabeen, H. (2019). A Scalable Framework for Quality Assessment of RDF Datasets. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 261–276). Cham: Springer International Publishing.
  • Shah, G., Thierbach, K., Schmid, B., Waschke, J., Reade, A., Hlawitschka, M., Roeder, I., et al. (2019). Multi-scale imaging and analysis identify pan-embryo cell dynamics of germlayer formation in zebrafish. Nat. Commun., 10(1), 5753. Springer Science and Business Media LLC.
  • Singh, K., Jaradeh, M. Y., Shekarpour, S., Kulkarni, A., Radhakrishna, A. S., Lytra, I., Vidal, M.-E., et al. (2019). Towards optimisation of collaborative Question Answering over knowledge graphs. arXiv.
  • Singh, K., Saleem, M., Nadgeri, A., Conrads, F., Pan, J. Z., Ngomo, A.-C. N., & Lehmann, J. (2019). QaldGen: Towards microbenchmarking of question answering systems over knowledge graphs. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 277–292). Cham: Springer International Publishing.
  • Sodoge, J., Kuhlicke, C., Mahecha, M. D., & de Brito, M. M. (2024). Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany. Natural Hazards and Earth System Sciences, 24(5), 1757–1777. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/nhess-24-1757-2024
  • Spangenberg, N., Augenstein, C., Wilke, M., & Franczyk, B. (2019). An intelligent and data-driven decision support solution for the online surgery scheduling problem. In Enterprise Information Systems, Lecture notes in business information processing (pp. 82–103). Cham: Springer International Publishing.
  • Stadler, C., Sejdiu, G., Graux, D., & Lehmann, J. (2019). Querying large-scale RDF datasets using the SANSA framework. In . Zenodo.
  • Stadler, C., Sejdiu, G., Graux, D., & Lehmann, J. (2019). Sparklify: A Scalable Software Component for Efficient Evaluation of SPARQL Queries over Distributed RDF Datasets. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 293–308). Cham: Springer International Publishing.
  • Syed, S., Völske, M., Lipka, N., Stein, B., Schütze, H., & Potthast, M. (2019). Towards Summarization for Social Media - Results of the TL$mathsemicolon$DR Challenge. In Proceedings of the 12th International Conference on Natural Language Generation. Association for Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/w19-8666
  • Teumer, A., Li, Y., Ghasemi, S., Prins, B. P., Wuttke, M., Hermle, T., Giri, A., et al. (2019). Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nat. Commun., 10(1), 4130. Springer Science and Business Media LLC.
  • Tiepmar, J. (2015). Release of the MySQL based implementation of the CTS protocol. In P. Ba≈Ñski, H. Biber, E. Breiteneder, M. Kupietz, H. Lüngen, & A. Witt (Eds.), Proceedings of the 3rd Workshop on Challenges in the Management of Large Corpora (CMLC-3), Lancaster, 20 July 2015, Proceedings of the 3rd Workshop on Challenges in the Management of Large Corpora (CMLC-3), Lancaster, 20 July 2015 (pp. 35–43). Mannheim: Institut für Deutsche Sprache. Retrieved from https://nbn-resolving.org/urn:nbn:de:bsz:mh39-38374
  • Tiepmar, J., & Heyer, G. (2019). The Canonical Text Services in Classics and Beyond. In Digital Classical Philology (pp. 95–114).
  • Tin, A., Marten, J., Halperin Kuhns, V. L., Li, Y., Wuttke, M., Kirsten, H., Sieber, K. B., et al. (2019). Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat. Genet., 51(10), 1459–1474. Springer Science and Business Media LLC.
  • Ulbricht, M. (2019, October). Understanding Inconsistency – A Contribution to the Field of Non-monotonic Reasoning.
  • Ulbricht, M. (2021). On the maximal number of complete extensions in abstract argumentation frameworks. In Proceedings of the Eighteenth International Conference on Principles of Knowledge Representation and Reasoning. Hanoii, Vietnam: International Joint Conferences on Artificial Intelligence Organization.
  • Umlauft, J., & Korn, M. (2019). 3-D fluid channel location from noise tremors using matched field processing. Geophysical Journal International, 219(3), 1550–1561. Oxford University Press.
  • Vakkari, P., Völske, M., Potthast, M., Hagen, M., & Stein, B. (2019). Modeling the usefulness of search results as measured by information use. Information Processing & Management, 56(3), 879–894. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.ipm.2019.02.001
  • Viktorinová, I., Haase, R., Pietzsch, T., Henry, I., & Tomancak, P. (2019). Analysis of actomyosin dynamics at local cellular and tissue scales using time-lapse movies of cultured drosophila egg chambers. JoVE (Journal of Visualized Experiments), (148), e58587.
  • Volz, V., Naujoks, B., Kerschke, P., & Tuv sar, T. (2019). Single- and multi-objective game-benchmark for evolutionary algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference. Prague Czech Republic: ACM.
  • Vrandev ci’c, D., Pintscher, L., & Krötzsch, M. (2023). Wikidata: The Making Of. In Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, & G.-J. Houben (Eds.), Companion Proceedings of the ACM Web Conference 2023 (WWW’23) (pp. 615–624). United States of America: Association for Computing Machinery (ACM), New York.
  • Vu, O., Mendenhall, J., Altarawy, D., & Meiler, J. (2019). BCL::Mol2D—a robust atom environment descriptor for QSAR modeling and lead optimization. Journal of Computer-Aided Molecular Design, 33(5), 477–486. Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1007/s10822-019-00199-8
  • Walker, C. J., Oakes, C. C., Genutis, L. K., Giacopelli, B., Liyanarachchi, S., Nicolet, D., Eisfeld, A.-K., et al. (2019). Genome-wide association study identifies an acute myeloid leukemia susceptibility locus near BICRA. Leukemia, 33(3), 771–775. Springer Science and Business Media LLC.
  • Weingarten, M. F. J., Scholz, M., Wohland, T., Horn, K., Stumvoll, M., Kovacs, P., & Tönjes, A. (2019). Circulating oxytocin is genetically determined and associated with obesity and impaired glucose tolerance. J. Clin. Endocrinol. Metab., 104(11), 5621–5632. The Endocrine Society.
  • Westphal, P., Bühmann, L., Bin, S., Jabeen, H., & Lehmann, J. (2019). SML-Bench -- A benchmarking framework for structured machine learning. Semant. Web, 10(2), 231–245. IOS Press.
  • Wiegmann, M., Stein, B., & Potthast, M. (2019). Overview of the Celebrity Profiling Task at PAN 2019. In Conference and Labs of the Evaluation Forum. Retrieved from https://api.semanticscholar.org/CorpusID:267845718
  • Wiegmann, M., Stein, B., & Potthast, M. (2019). Celebrity Profiling. In A. Korhonen, D. Traum, & L. Màrquez (Eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 2611–2618). Florence, Italy: Association for Computational Linguistics. Retrieved from https://aclanthology.org/P19-1249
  • Wiegreffe, D., Alexander, D., Stadler, P. F., & Zeckzer, D. (2019). RNApuzzler: efficient outerplanar drawing of RNA-secondary structures. Bioinformatics, 35(8), 1342–1349. Oxford University Press (OUP).
  • Wilhelm, M., Kern-Isberner, G., Ecke, A., & Baader, F. (2019). Counting strategies for the probabilistic description logic $mathcalALC^mathsf ME$ under the principle of maximum entropy. In Logics in Artificial Intelligence, Lecture notes in computer science (pp. 434–449). Cham: Springer International Publishing.
  • Wuttke, M., Li, Y., Li, M., Sieber, K. B., Feitosa, M. F., Gorski, M., Tin, A., et al. (2019). A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet., 51(6), 957–972. Springer Science and Business Media LLC.
  • Xavier, L. C. P., da Silva, S. M. O., Carvalho, T. M. N., Filho, J. D. P., & de Assis de Souza Filho, F. (2020). Use of Machine Learning in Evaluation of Drought Perception in Irrigated Agriculture: The Case of an Irrigated Perimeter in Brazil. Water, 12(6), 1546. Multidisciplinary Digital Publishing Institute.
  • Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H. S., & Lehmann, J. (2019). Temporal knowledge Graph embedding model based on Additive Time Series decomposition. arXiv.
  • Zafar, H., Tavakol, M., & Lehmann, J. (2019). MDP-based Shallow Parsing in Distantly Supervised QA Systems. ArXiv, abs/1909.12566. Retrieved from https://api.semanticscholar.org/CorpusID:203592087
  • Zafar, H., Tavakol, M., & Lehmann, J. (2019). Distantly supervised question parsing. arXiv.
  • Zangerle, E., Tschuggnall, M., Specht, G., Stein, B., & Potthast, M. (2019). Overview of the Style Change Detection Task at PAN 2020. In Conference and Labs of the Evaluation Forum.
  • Zangerle, E., Tschuggnall, M., Specht, G., Stein, B., & Potthast, M. (2019). Overview of the Style Change Detection Task at PAN 2019. In L. Cappellato, N. Ferro, D. E. Losada, & H. Müller (Eds.), Working Notes Papers of the CLEF 2019 Evaluation Labs, CEUR Workshop Proceedings (Vol. 2380). Retrieved from https://ceur-ws.org/Vol-2380/paper_243.pdf
funded by:
Gefördert vom Bundesministerium für Bildung und Forschung.
Gefördert vom Freistaat Sachsen.