JavaScript is required to use this site. Please enable JavaScript in your browser settings.

2020

  • Abbas, N., Alghamdi, K., Alinam, M., Alloatti, F., Amaral, G., d’Amato, C., Asprino, L., et al. (2020). Knowledge Graphs evolution and preservation -- A technical report from ISWS 2019. arXiv.
  • Akiki, C., & Potthast, M. (2020). Exploring Argument Retrieval with Transformers. In L. Cappellato, C. Eickhoff, N. Ferro, & A. Névéol (Eds.), Working Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 22-25, 2020, CEUR Workshop Proceedings (Vol. 2696). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-2696/paper_241.pdf
  • Alam, M. M., Jabeen, H., Ali, M., Mohiuddin, K., & Lehmann, J. (2020). Affinity Dependent Negative Sampling for Knowledge Graph Embeddings. In DL4KG@ESWC.
  • Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferrandis, C. M., Muennighoff, N., et al. (2023). SantaCoder: don’t reach for the stars!. arXiv.
  • Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., & Kovtunova, A. (2020). Finding small proofs for Description Logic entailments: Theory and practice. In . EasyChair.
  • Alshomary, M., Syed, S., Potthast, M., & Wachsmuth, H. (2020). Target Inference in Argument Conclusion Generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/2020.acl-main.399
  • Angles, R., Thakkar, H., & Tomaszuk, D. (2020). Mapping RDF databases to property graph databases. IEEE Access, 8, 86091–86110. Institute of Electrical and Electronics Engineers (IEEE).
  • Argun, A., Thalheim, T., Bo, S., Cichos, F., & Volpe, G. (2020). Enhanced force-field calibration via machine learning. Appl. Phys. Rev., 7(4), 041404. AIP Publishing.
  • Armitage, J., Thakur, S., Tripathi, R., Lehmann, J., & Maleshkova, M. (2020). Training Multimodal Systems for Classification with Multiple Objectives. arXiv.
  • Armstrong, N. J., Mather, K. A., Sargurupremraj, M., Knol, M. J., Malik, R., Satizabal, C. L., Yanek, L. R., et al. (2020). Common genetic variation indicates separate causes for periventricular and deep white matter hyperintensities. Stroke, 51(7), 2111–2121. Ovid Technologies (Wolters Kluwer Health).
  • Augenstein, C., & Franczyk, B. (2020). Anomaly detection on data streams -- A LSTM’s diary. In Research Challenges in Information Science, Lecture notes in business information processing (pp. 369–377). Cham: Springer International Publishing.
  • Augenstein, C., Zschörnig, T., Spangenberg, N., Wehlitz, R., & Franczyk, B. (2020). A generic architectural framework for machine learning on data streams. In Enterprise Information Systems, Lecture notes in business information processing (pp. 97–114). Cham: Springer International Publishing.
  • Baader, F., Bednarczyk, B., & Rudolph, S. (2020). Satisfiability and query answering in description logics with global and local cardinality constraints. arXiv.
  • Baader, F., Borgwardt, S., Koopmann, P., Ozaki, A., & Thost, V. (2020). Metric temporal description logics with interval-rigid names. ACM Trans. Comput. Log., 21(4), 1–46. Association for Computing Machinery (ACM).
  • Baader, F., Borgwardt, S., Koopmann, P., Thost, V., & Turhan, A.-Y. (2020). Semantic Technologies for Situation Awareness. KI - Künstl. Intell., 34(4), 543–550. Springer Science and Business Media LLC.
  • Baader, F., & Clément Théron. (2020). Role-value maps and general concept inclusions in the minimal description logic with value restrictions or revisiting old skeletons in the DL cupboard. KI - Künstl. Intell., 34(3), 291–301. Springer Science and Business Media LLC.
  • Baader, F., & De Bortoli, F. (2020). Description Logics that Count, and What They Can and Cannot Count (Extended Abstract). In S. Borgwardt & T. Meyer (Eds.), Proceedings of the 33rd International Workshop on Description Logics (DL’20), CEUR Workshop Proceedings (Vol. 2663). Online: CEUR-WS.
  • Baader, F., & Kapur, D. (2020). Deciding the word problem for ground identities with commutative and extensional symbols. In Automated Reasoning, Lecture notes in computer science (pp. 163–180). Cham: Springer International Publishing.
  • Baader, F., Marantidis, P., Mottet, A., & Okhotin, A. (2020). Extensions of unification modulo ACUI. Math. Struct. Comput. Sci., 30(6), 597–626. Cambridge University Press (CUP).
  • Baader, F., & Rydval, J. (2020). Description logics with concrete domains and general concept inclusions revisited. In Automated Reasoning, Lecture notes in computer science (pp. 413–431). Cham: Springer International Publishing.
  • Balog, K., Flekova, L., Hagen, M., Jones, R., Potthast, M., Radlinski, F., Sanderson, M., et al. (2020). Common Conversational Community Prototype: Scholarly Conversational Assistant. Retrieved from https://arxiv.org/abs/2001.06910
  • Banerjee, D., Chaudhuri, D., Dubey, M., & Lehmann, J. (2020). PNEL: Pointer network based end-to-end entity linking over knowledge graphs. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 21–38). Cham: Springer International Publishing.
  • Baumann, R., Brewka, G., & Ulbricht, M. (2020). Comparing weak admissibility semantics to their Dung-style counterparts -- reduct, modularization, and strong equivalence in abstract argumentation. In Proceedings of the Seventeenth International Conference on Principles of Knowledge Representation and Reasoning. Rhodes, Greece: International Joint Conferences on Artificial Intelligence Organization.
  • Baumann, R., Gabbay, D. M., & Rodrigues, O. (2020). Forgetting an Argument. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020 (pp. 2750–2757). Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/5662
  • Baumann, R., & Heinrich, M. (2020). Timed abstract dialectical frameworks: A simple translation-based approach. Computational Models of Argument: Proceedings of COMMA 2020, 326, 103. IOS Press.
  • Baumann, R., & Heinrich, M. (2020). A Python Script for Abstract Dialectical Frameworks. Proceedings of the Third International Workshop on Systems and Algorithms for Formal Argumentation co-located with the 8th International Conference on Computational Models of Argument (COMMA 2020), September 8, 2020, 74–79.
  • Behme, A., Klüppelberg, C., & Reinert, G. (2020). Ruin probabilities for risk processes in a bipartite network. Stoch. Models, 36(4), 548–573. Informa UK Limited.
  • Behme, A., & Sideris, A. (2020). Markov-modulated generalized Ornstein-Uhlenbeck processes and an application in risk theory. Retrieved from https://arxiv.org/abs/2012.10712
  • Bellmund, J. L., De Cothi, W., Ruiter, T. A., Nau, M., Barry, C., & Doeller, C. F. (2020). Deforming the metric of cognitive maps distorts memory. Nature human behaviour, 4(2), 177–188. Nature Publishing Group UK London.
  • Bevendorff, J., Al Khatib, K., Potthast, M., & Stein, B. (2020). Crawling and Preprocessing Mailing Lists At Scale for Dialog Analysis. In D. Jurafsky, J. Chai, N. Schluter, & J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 1151–1158). Online: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2020.acl-main.108
  • Bevendorff, J., Ghanem, B., Giachanou, A., Kestemont, M., Manjavacas, E., Markov, I., Mayerl, M., et al. (2020). Overview of PAN 2020: Authorship Verification, Celebrity Profiling, Profiling Fake News Spreaders on Twitter, and Style Change Detection. In A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis, H. Joho, C. Lioma, C. Eickhoff, et al. (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction (pp. 372–383). Cham: Springer International Publishing.
  • Bevendorff, J., Ghanem, B., Giachanou, A., Kestemont, M., Manjavacas, E., Potthast, M., Rangel, F., et al. (2020). Shared Tasks on Authorship Analysis at PAN 2020. In J. M. Jose, E. Yilmaz, J. Magalh~aes, P. Castells, N. Ferro, M. J. Silva, & F. Martins (Eds.), Advances in Information Retrieval (pp. 508–516). Cham: Springer International Publishing.
  • Bevendorff, J., Wenzel, T., Potthast, M., Hagen, M., & Stein, B. (2020). On divergence-based author obfuscation: An attack on the state of the art in statistical authorship verification. it - Information Technology, 62(2), 99–115. Retrieved from https://doi.org/10.1515/itit-2019-0046
  • Bischoff, S., Deckers, N., Schliebs, M., Thies, B., Hagen, M., Stamatatos, E., Stein, B., et al. (2020). The Importance of Suppressing Domain Style in Authorship Analysis. CoRR, abs/2005.14714. Retrieved from https://arxiv.org/abs/2005.14714
  • Bodirsky, M., Knäuer, S., & Rudolph, S. (2020). Datalog-expressibility for monadic and Guarded Second-order Logic. arXiv.
  • Bondarenko, A., Fröbe, M., Beloucif, M., Gienapp, L., Ajjour, Y., Panchenko, A., Biemann, C., et al. (2020). Overview of Touché 2020: Argument Retrieval. In A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis, H. Joho, C. Lioma, C. Eickhoff, et al. (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction (pp. 384–395). Cham: Springer International Publishing.
  • Bondarenko, A., Hagen, M., Potthast, M., Wachsmuth, H., Beloucif, M., Biemann, C., Panchenko, A., et al. (2020). Touché: First shared task on argument retrieval. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 517–523). Cham: Springer International Publishing.
  • Bossek, J., Casel, K., Kerschke, P., & Neumann, F. (2020). The node weight dependent traveling salesperson problem. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference. Canc{ú}n Mexico: ACM.
  • Bossek, J., Doerr, C., & Kerschke, P. (2020). Initial design strategies and their effects on sequential model-based optimization. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference. Canc{ú}n Mexico: ACM.
  • Bossek, J., Doerr, C., Kerschke, P., Neumann, A., & Neumann, F. (2020). Evolving sampling strategies for one-shot optimization tasks. In Parallel Problem Solving from Nature -- PPSN XVI, Lecture notes in computer science (pp. 111–124). Cham: Springer International Publishing.
  • Bossek, J., Kerschke, P., & Trautmann, H. (2020). Anytime behavior of inexact TSP solvers and perspectives for automated algorithm selection. In 2020 IEEE Congress on Evolutionary Computation (CEC). Glasgow, United Kingdom: IEEE.
  • Bossek, J., Kerschke, P., & Trautmann, H. (2020). A multi-objective perspective on performance assessment and automated selection of single-objective optimization algorithms. Appl. Soft Comput., 88(105901), 105901. Elsevier BV.
  • Brauckmann, A., Goens, A., & Castrillon, J. (2020). ComPy-Learn: A toolbox for exploring machine learning representations for compilers. In 2020 Forum for Specification and Design Languages (FDL). Kiel, Germany: IEEE.
  • Brauckmann, A., Goens, A., Ertel, S., & Castrillon, J. (2020). Compiler-based graph representations for deep learning models of code. In Proceedings of the 29th International Conference on Compiler Construction. San Diego CA USA: ACM.
  • Brewka, G. (2020). Nichtmonotones Schließen. In G. Görz, U. Schmid, & T. Braun (Eds.), Handbuch der Künstlichen Intelligenz, 6. Auflage (pp. 189–226). De Gruyter. Retrieved from https://doi.org/10.1515/9783110659948-006
  • Bütof, R., Löck, S., Soliman, M., Haase, R., Perrin, R., Richter, C., Appold, S., et al. (2020). Dose--volume predictors of early esophageal toxicity in non-small cell lung cancer patients treated with accelerated-hyperfractionated radiotherapy. Radiotherapy and Oncology, 143, 44–50. Elsevier.
  • Burek, P., Scherf, N., & Herre, H. (2020, May). On the ontological foundations of cellular development. bioRxiv.
  • Burek, P., Scherf, N., & Herre, H. (2020). On the formal representation and annotation of cellular genealogies. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 194–203). Cham: Springer International Publishing.
  • Carvalho, T. M. N., de Souza Filho, F. D. A., & de Saboia, M. A. M. (2020). Performance of rainwater tanks for runoff reduction under climate change scenarios: a case study in Brazil. Urban Water Journal, 17(10), 912–922. Taylor & Francis.
  • Chau, M. T., Esteves, D., & Lehmann, J. (2020). A Neural-based model to Predict the Future Natural Gas Market Price through Open-domain Event Extraction. In CLEOPATRA@ESWC.
  • Chen, W.-F., Syed, S., Stein, B., Hagen, M., & Potthast, M. (2020). Abstractive Snippet Generation. In Proceedings of The Web Conference 2020. Taipei Taiwan: ACM.
  • Cichos, F., Gustavsson, K., Mehlig, B., & Volpe, G. (2020). Machine learning for active matter. Nat. Mach. Intell., 2(2), 94–103. Springer Science and Business Media LLC.
  • Ciucci, S., Durán, C., Palladini, A., Ijaz, U. Z., Sterbini, F. P., Masucci, L., Cammarota, G., et al. (2020, March). Machine learning pattern recognition and differential network analysis of gastric microbiome in the presence of proton pump inhibitor treatment or Helicobacter pylori infection. bioRxiv.
  • Darari, F., Rudolph, S., Razniewski, S., & Nutt, W. (2020). Completeness and soundness guarantees for conjunctive SPARQL queries over RDF data sources with completeness statements. Semantic Web, 11(3), 441–482.
  • de Oliveira, T. A., de Assis de Souza Filho, F., de Azevedo Reis, G., & Carvalho, T. M. N. (2020). Identification of correlation between residential water demand and average income using the pool regression model: Study case in Fortaleza-Brazil. Water Utility Journal.
  • Dietrich, R., Winkler, F., Knüpfer, A., & Nagel, W. (2020). Pika: Center-wide and job-aware cluster monitoring. In 2020 IEEE International Conference on Cluster Computing (CLUSTER) (pp. 424–432). IEEE.
  • Dorn, J., Apel, S., & Siegmund, N. (2020). Generating attributed variability models for transfer learning. In Proceedings of the 14th International Working Conference on Variability Modelling of Software-Intensive Systems. Magdeburg Germany: ACM.
  • Dorn, J., Apel, S., & Siegmund, N. (2020). Mastering uncertainty in performance estimations of configurable software systems. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. Virtual Event Australia: ACM.
  • Ebel, P., Brokhausen, F., & Vogelsang, A. (2020). The Role and Potentials of Field User Interaction Data in the Automotive UX Development Lifecycle: An Industry Perspective. In 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’20 (pp. 141–150). Virtual Event, DC, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3409120.3410638
  • Ebel, P., Göl, I. E., Lingenfelder, C., & Vogelsang, A. (2020). Destination Prediction Based on Partial Trajectory Data. Retrieved from https://arxiv.org/abs/2004.07473
  • Ebert, M. P., Meindl-Beinker, N. M., Gutting, T., Maenz, M., Betge, J., Schulte, N., Zhan, T., et al. (2022). Second-line therapy with nivolumab plus ipilimumab for older patients with oesophageal squamous cell cancer (RAMONA): a multicentre, open-label phase 2 trial. Lancet Healthy Longev., 3(6), e417-e427. Elsevier BV.
  • Egger, R., & Hummel, S. (2020). Stolperstein oder Kompetenzstufe: Die Studieneingangsphase und ihre Bedeutung für die Wissenschaftssozialisation von Studierenden. Lernweltforschung, Lernweltforschung. Deutschland: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Fischer, N., & Okhrin, O. (2020). Statistical modeling of the required space for inland vessels. Commun. Stat. Case Stud. Data Anal. Appl., 6(2), 167–190. Informa UK Limited.
  • Flegel, T., Neumann, A., Holst, A.-L., Kretzschmann, O., Loderstedt, S., Tästensen, C., Gutmann, S., et al. (2024). Machine learning algorithms predict canine structural epilepsy with high accuracy. Frontiers in Veterinary Science, 11. Retrieved from https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2024.1406107
  • Fränzl, M., & Cichos, F. (2020). Active particle feedback control with a single-shot detection convolutional neural network. Sci. Rep., 10(1), 12571. Springer Science and Business Media LLC.
  • Fraiman, N., Mukherjee, S., & Thoppe, G. (2020). The Shadow knows: Empirical Distributions of Minimum Spanning Acycles and Persistence Diagrams of Random Complexes. arXiv. Retrieved from https://arxiv.org/abs/2012.14122
  • Fraiman, N., Mukherjee, S., & Thoppe, G. (2020). The bulk and the extremes of minimal spanning acycles and persistence diagrams of random complexes. arXiv.
  • Franczyk, B., Hernes, M., Kozierkiewicz, A., Kozina, A., Pietranik, M., Roemer, I., & Schieck, M. (2020). Deep learning for grape variety recognition. Procedia Comput. Sci., 176, 1211–1220. Elsevier BV.
  • Frey, M., Nau, M., & Doeller, C. F. (2020, December). MR-based camera-less eye tracking using deep neural networks. bioRxiv.
  • Fröbe, M., Bevendorff, J., Reimer, J. H., Potthast, M., & Hagen, M. (2020). Sampling Bias Due to Near-Duplicates in Learning to Rank. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’20 (pp. 1997–2000). Virtual Event, China: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3397271.3401212
  • Fröbe, M., Bittner, J. P., Potthast, M., & Hagen, M. (2020). The Effect of Content-Equivalent Near-Duplicates on the Evaluation of Search Engines. In J. M. Jose, E. Yilmaz, J. Magalh~aes, P. Castells, N. Ferro, M. J. Silva, & F. Martins (Eds.), Advances in Information Retrieval (pp. 12–19). Cham: Springer International Publishing.
  • Fröbe, M., Günther, S., Probst, M., Potthast, M., & Hagen, M. (2022). Webis-MS-MARCO-Anchor-Texts-22. Zenodo.
  • Fröbe, M., Schwanke, N., Hagen, M., & Potthast, M. (2020). A Search Engine for Police Press Releases to Double-Check the News. In J. M. Jose, E. Yilmaz, J. Magalh~aes, P. Castells, N. Ferro, M. J. Silva, & F. Martins (Eds.), Advances in Information Retrieval (pp. 454–458). Cham: Springer International Publishing.
  • Gaebel, J., Wu, H.-G., Oeser, A., Cypko, M. A., Stoehr, M., Dietz, A., Neumuth, T., et al. (2020). Modeling and processing up-to-dateness of patient information in probabilistic therapy decision support. Artif. Intell. Med., 104(101842), 101842. Elsevier BV.
  • Gärtner, F., Kühnl, F., Seemann, C. R., Höner Zu Siederdissen, C., & Stadler, P. F. (2020). Superbubbles as an empirical characteristic of directed networks. Network Science, 9(1), 49–58. Cambridge University Press (CUP). Retrieved from http://dx.doi.org/10.1017/nws.2020.32
  • Galkin, M., Trivedi, P., Maheshwari, G., Usbeck, R., & Lehmann, J. (2020). Message passing for hyper-relational knowledge graphs. arXiv.
  • Gienapp, L., Fröbe, M., Hagen, M., & Potthast, M. (2020). The Impact of Negative Relevance Judgments on NDCG. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM ’20 (pp. 2037–2040). Virtual Event, Ireland: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3340531.3412123
  • Gienapp, L., Stein, B., Hagen, M., & Potthast, M. (2020). Efficient Pairwise Annotation of Argument Quality. In D. Jurafsky, J. Chai, N. Schluter, & J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 5772–5781). Online: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2020.acl-main.511
  • Gienapp, L., Stein, B., Hagen, M., & Potthast, M. (2020). Estimating Topic Difficulty Using Normalized Discounted Cumulated Gain. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM ’20 (pp. 2033–2036). Virtual Event, Ireland: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3340531.3412109
  • Gockel, I., Jansen-Winkeln, B., Sucher, R., Rayes, N., Thieme, R., Moulla, Y., Niebisch, S., et al. (2020). (HSI) -- eine verlässliche gewebedifferenzierung?. Zentralbl. Chir., 145(2), 125–129. Georg Thieme Verlag KG.
  • Gockel, I., Jansen-Winkeln, B., Sucher, R., Rayes, N., Thieme, R., Moulla, Y., Niebisch, S., et al. (2020). Hyperspektral-Imaging (HSI) – eine verlässliche Gewebedifferenzierung?. Zentralbl. Chir., 145(2), 125–129. Georg Thieme Verlag KG.
  • Golkov, V., Becker, A., Plop, D. T., Čuturilo, D., Davoudi, N., Mendenhall, J., Moretti, R., et al. (2020). Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost Functions. arXiv. Retrieved from https://arxiv.org/abs/2007.07029
  • Golkov, V., Skwark, M. J., Mirchev, A., Dikov, G., Geanes, A. R., Mendenhall, J., Meiler, J., et al. (2020). 3D Deep Learning for Biological Function Prediction from Physical Fields. 2020 International Conference on 3D Vision (3DV), 928–937. IEEE. Retrieved from http://dx.doi.org/10.1109/3DV50981.2020.00103
  • Graux, D., Sejdiu, G., Stadler, C., Napolitano, G., & Lehmann, J. (2020). MINDS: A translator to embed mathematical expressions inside SPARQL queries. In Semantic Systems. In the Era of Knowledge Graphs, Lecture notes in computer science (pp. 104–117). Cham: Springer International Publishing.
  • Gray, C., Mosig, C., Bush, R., Pelsser, C., Roughan, M., Schmidt, T. C., & Wahlisch, M. (2020). BGP Beacons, Network Tomography, and Bayesian Computation to Locate Route Flap Damping, 492–505.
  • Gros, T. P., Gross, D., Gumhold, S., Hoffmann, J., Klauck, M., & Steinmetz, M. (2020). TraceVis: Towards Visualization for Deep Statistical Model Checking. In Leveraging Applications of Formal Methods, Verification and Validation: Tools and Trends: 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20–30, 2020, Proceedings, Part IV (pp. 27–46). Rhodes, Greece: Springer-Verlag. Retrieved from https://doi.org/10.1007/978-3-030-83723-5_3
  • Günther, M., Thiele, M., & Lehner, W. (2020). RETRO: Relation Retrofitting For In-Database Machine Learning on Textual Data. Retrieved from https://arxiv.org/abs/1911.12674
  • Günther, M., Thiele, M., & Lehner, W. (2020). Retro: Relation Retrofitting For In-Database Machine Learning on Textual Data. In Proceedings of the 23rd International Conference on Extending Database Technology, EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020 (pp. 411–414). OpenProceedings.org. Retrieved from https://doi.org/10.5441/002/edbt.2020.45
  • Günther, M., Thiele, M., Nikulski, E., & Lehner, W. (2020). RetroLive: Analysis of Relational Retrofitted Word Embeddings. OpenProceedings.org.
  • Guillen-Guio, B., Lorenzo-Salazar, J. M., Ma, S.-F., Hou, P.-C., Hernandez-Beeftink, T., Corrales, A., Garc’ia-Laorden, M. I., et al. (2020). Sepsis-associated acute respiratory distress syndrome in individuals of European ancestry: a genome-wide association study. Lancet Respir. Med., 8(3), 258–266. Elsevier BV.
  • Gupta, A., Incardona, P., Aydin, A. D., Gumhold, S., Gunther, U., & Sbalzarini, I. F. (2020). An architecture for interactive in situ visualization and its transparent implementation in OpenFPM. In ISAV’20 In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization. Atlanta GA USA: ACM.
  • Haase, R., Jain, A., Rigaud, S., Vorkel, D., Rajasekhar, P., Suckert, T., Lambert, T. J., et al. (2020). Interactive design of GPU-accelerated image data flow graphs and cross-platform deployment using multi-lingual code generation. bioRxiv, 2020–11. Cold Spring Harbor Laboratory.
  • Haase, R., Royer, L. A., Steinbach, P., Schmidt, D., Dibrov, A., Schmidt, U., Weigert, M., et al. (2020). CLIJ: GPU-accelerated image processing for everyone. Nature methods, 17(1), 5–6. Nature Publishing Group US New York.
  • Heindorf, S., Scholten, Y., Wachsmuth, H., Ngonga Ngomo, A.-C., & Potthast, M. (2020). CauseNet: Towards a Causality Graph Extracted from the Web. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM ’20 (pp. 3023–3030). Virtual Event, Ireland: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3340531.3412763
  • Heinz, C. N., Echle, A., Foersch, S., Bychkov, A., & Kather, J. N. (2022). The future of artificial intelligence in digital pathology - results of a survey across stakeholder groups. Histopathology, 80(7), 1121–1127. Wiley.
  • Hofer, E., Roshchupkin, G. V., Adams, H. H. H., Knol, M. J., Lin, H., Li, S., Zare, H., et al. (2020). Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nat. Commun., 11(1), 4796. Springer Science and Business Media LLC.
  • Hoffmann, K., Cazemier, K., Baldow, C., Schuster, S., Kheifetz, Y., Schirm, S., Horn, M., et al. (2020). Integration of mathematical model predictions into routine workflows to support clinical decision making in haematology. BMC Med. Inform. Decis. Mak., 20(1), 28.
  • Horlava, N., Mironenko, A., Niehaus, S., Wagner, S., Roeder, I., & Scherf, N. (2020). A comparative study of semi- and self-supervised semantic segmentation of biomedical microscopy data. arXiv.
  • Huebl, A., Vay, J., Lehe, R., Mayes, C., Tsai, Y., Friedman, A., Thevenet, M., et al. (2020). Aspiration for Open Science in Accelerator & Beam Physics Modeling. Snowmass21 LOI.
  • Hummel, S. (2020). Grundlagen der Hochschullehre. In S. Hummel (Ed.), Grundlagen der Hochschullehre (pp. 1–6). Deutschland: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Hummel, S. (2020). Grundlagen der Hochschullehre: Teaching in Higher Education. Deutschland: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Ibrahim, S., Fathalla, S., Lehmann, J., & Jabeen, H. (2020). Multilingual ontology merging using cross-lingual matching. In 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). Melbourne, Australia: IEEE.
  • Ionescu, B., Müller, H., Druagulinescu, A. M., Idrissi-Yaghir, A., Radzhabov, A., Herrera, A. G. S. de, Andrei, A., et al. (2024). Advancing Multimedia Retrieval in Medical, Social Media and Content Recommendation Applications with ImageCLEF 2024. In N. Goharian, N. Tonellotto, Y. He, A. Lipani, G. McDonald, C. Macdonald, & I. Ounis (Eds.), Advances in Information Retrieval (pp. 44–52). Cham: Springer Nature Switzerland.
  • Jabeen, H., Haziiev, E., Sejdiu, G., & Lehmann, J. (2020). DISE: A distributed in-memory SPARQL processing engine over tensor data. In 2020 IEEE 14th International Conference on Semantic Computing (ICSC). San Diego, CA, USA: IEEE.
  • Jacobi, T., Massier, L., Klöting, N., Horn, K., Schuch, A., Ahnert, P., Engel, C., et al. (2020). HLA class II allele analyses implicate common genetic components in type 1 and non-insulin-treated type 2 diabetes. J. Clin. Endocrinol. Metab., 105(3), e245-e254. The Endocrine Society.
  • Jain, A., Ulman, V., Mukherjee, A., Prakash, M., Cuenca, M. B., Pimpale, L. G., Münster, S., et al. (2020). Regionalized tissue fluidization is required for epithelial gap closure during insect gastrulation. Nature communications, 11(1), 5604. Nature Publishing Group UK London.
  • Jebb, D., Huang, Z., Pippel, M., Hughes, G. M., Lavrichenko, K., Devanna, P., Winkler, S., et al. (2020). Six reference-quality genomes reveal evolution of bat adaptations. Nature, 583(7817), 578–584. Springer Science and Business Media LLC.
  • Kacupaj, E., Zafar, H., Lehmann, J., & Maleshkova, M. (2020). VQuAnDa: Verbalization QUestion ANswering DAtaset. In The Semantic Web, Lecture notes in computer science (pp. 531–547). Cham: Springer International Publishing.
  • Kahlert, F., & Gumhold, S. (2020). Partial matching of trajectories with particle orientation for exploratory trajectory visualization. The Eurographics Association.
  • Kalaš, M., Plantard, L., Sladoje, N., Lindblad, J., Kirschmann, M. A., Jones, M., Chessel, A., et al. (2020). EDAM-bioimaging: The ontology of bioimage informatics operations, topics, data, and formats (update 2020). In ELIXIR All Hands 2020.
  • Kaleta, K., & Schilling, R. L. (2020). Progressive intrinsic ultracontractivity and heat kernel estimates for non-local Schrödinger operators. J. Funct. Anal., 279(6), 108606. Elsevier BV.
  • Kaltenecker, C., Grebhahn, A., Siegmund, N., & Apel, S. (2020). The interplay of sampling and machine learning for software performance prediction. IEEE Softw., 37(4), 58–66. Institute of Electrical and Electronics Engineers (IEEE).
  • Kaptan, D., Penkov, S., Zhang, X., Gade, V. R., Raghuraman, B. K., Galli, R., Sampaio, J. L., et al. (2020). Exogenous ethanol induces a metabolic switch that prolongs the survival of Caenorhabditis elegans dauer larva and enhances its resistance to desiccation. Aging Cell, 19(10), e13214.
  • Kaune, T., Ruffert, C., Hesselbarth, N., Damm, M., Krug, S., Cardinal von Widdern, J., Masson, E., et al. (2020). Analysis of GPRC6A variants in different pancreatitis etiologies. Pancreatology, 20(7), 1262–1267. Elsevier BV.
  • Kelber, F., Wu, B., Vogginger, B., Partzsch, J., Liu, C., Stolba, M., & Mayr, C. (2020). Mapping deep neural networks on SpiNNaker2. In Proceedings of the Neuro-inspired Computational Elements Workshop. Heidelberg Germany: ACM.
  • Keller-Ressel, M., & Nargang, S. (2020). Hydra: a method for strain-minimizing hyperbolic embedding of network- and distance-based data. J. Complex Netw., 8(1). Oxford University Press (OUP).
  • Kern-Isberner, G., Beierle, C., & Brewka, G. (2020). Syntax splitting = relevance + independence: New postulates for nonmonotonic reasoning from conditional belief bases. In Proceedings of the Seventeenth International Conference on Principles of Knowledge Representation and Reasoning. Rhodes, Greece: International Joint Conferences on Artificial Intelligence Organization.
  • Kestemont, M., Manjavacas, E., Markov, I., Bevendorff, J., Wiegmann, M., Stamatatos, E., Stein, B., et al. (2021). Overview of the cross-domain authorship verification task at PAN 2021. In G. Faggioli, N. Ferro, A. Joly, M. Maistro, & F. Piroi (Eds.), CLEF-WN 2021 - Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings (Vol. 2936, pp. 1743–1759). CEUR-WS.
  • Kestemont, M., Manjavacas, E., Markov, I., Bevendorff, J., Wiegmann, M., Stamatatos, E., Potthast, M., et al. (2020). Overview of the Cross-Domain Authorship Verification Task at PAN 2020. In .
  • Khatib, K. A., Völske, M., Syed, S., Kolyada, N., & Stein, B. (2020). Exploiting Personal Characteristics of Debaters for Predicting Persuasiveness. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/2020.acl-main.632
  • Kiesel, J., Kneist, F., Meyer, L., Komlossy, K., Stein, B., & Potthast, M. (2020). Web Page Segmentation Revisited: Evaluation Framework and Dataset. In M. d’Aquin, S. Dietze, C. Hauff, E. Curry, & P. Cudré-Mauroux (Eds.), 29th ACM International Conference on Information and Knowledge Management (CIKM 2020) (pp. 3047–3054). ACM.
  • Kloenne, M., Niehaus, S., Lampe, L., Merola, A., Reinelt, J., Roeder, I., & Scherf, N. (2020). Domain-specific cues improve robustness of deep learning-based segmentation of CT volumes. Sci. Rep., 10(1), 10712. Springer Science and Business Media LLC.
  • Knodel, O., Voigt, M., Ufer, R., Pape, D., Lokamani, M., Müller, S. E., Gruber, T., et al. (2020). HELIPORT. In Proceedings of the 4th International Workshop on Practical Reproducible Evaluation of Computer Systems. Virtual Event Sweden: ACM.
  • Knutzen, F., Averbeck, P., Barrasso, C., Bouwer, L. M., Gardiner, B., Grünzweig, J. M., Hänel, S., et al. (2023). Impacts and damages of the European multi-year drought and heat event 2018–2022 on forests, a review.
  • Kobs, K., Potthast, M., Wiegmann, M., Zehe, A., Stein, B., & Hotho, A. (2020). Towards Predicting the Subscription Status of Twitch.tv Users - ECML-PKDD ChAT Discovery Challenge 2020. In ChAT@PKDD/ECML. Retrieved from https://api.semanticscholar.org/CorpusID:227177260
  • König, J., Malberg, S., Martens, M., Niehaus, S., Krohn-Grimberghe, A., & Ramaswamy, A. (2020). Multi-stage reinforcement learning for object detection. In Advances in Intelligent Systems and Computing, Advances in intelligent systems and computing (pp. 178–191). Cham: Springer International Publishing.
  • Krajsic, P., & Franczyk, B. (2020). Lambda architecture for anomaly detection in online process mining using autoencoders. In Advances in Computational Collective Intelligence, Communications in computer and information science (pp. 579–589). Cham: Springer International Publishing.
  • Kreuz, M., Otto, D. J., Fuessel, S., Blumert, C., Bertram, C., Bartsch, S., Loeffler, D., et al. (2020). ProstaTrend-A multivariable prognostic RNA expression score for aggressive prostate cancer. Eur. Urol., 78(3), 452–459. Elsevier BV.
  • Krötzsch, M. (2020). Computing cores for existential rules with the standard chase and ASP. In Proceedings of the Seventeenth International Conference on Principles of Knowledge Representation and Reasoning. Rhodes, Greece: International Joint Conferences on Artificial Intelligence Organization.
  • Kruse, J.-P., & Müller-Mall, S. (2020). Digitale Transformationen von Öffentlichkeit. Ausgangspunkte und Horizonte einer transdisziplinären Perspektivbildung. In Digitale Transformationen der Öffentlichkeit (pp. 7–16). Velbrück Wissenschaft.
  • Kuznetsov, S. O., Napoli, A., & Rudolph, S. (Eds.). (2020). Proceedings of the 7th International Workshop "What can FCA do for Artificial Intelligence"? co-located with International Joint Conference on Artificial Intelligence, FCA4AI@IJCAI 2019, Macao, China, August 10, 2019. CEUR Workshop Proceedings, CEUR Workshop Proceedings (Vol. 2529). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-2529
  • Liang, M., Schilling, R. L., & Wang, J. (2020). A unified approach to coupling SDEs driven by Lévy noise and some applications. Bernoulli (Andover.), 26(1), 664–693. Bernoulli Society for Mathematical Statistics and Probability.
  • Lorena, A. C., Garcia, L. P. F., Lehmann, J., Souto, M. C. P., & Ho, T. K. (2020). How complex is your classification problem?. ACM Comput. Surv., 52(5), 1–34. Association for Computing Machinery (ACM).
  • Lorenz, R., & Stadler, P. F. (2020). RNA secondary structures with limited base pair span: Exact backtracking and an application. Genes (Basel), 12(1), 14. MDPI AG.
  • Maktabi, M., Köhler, H., Ivanova, M., Neumuth, T., Rayes, N., Seidemann, L., Sucher, R., et al. (2020). Classification of hyperspectral endocrine tissue images using support vector machines. Int. J. Med. Robot., 16(5), 1–10. Wiley.
  • Manthey, N., Peñaloza, R., & Rudolph, S. (2020). SATPin: Axiom pinpointing for lightweight description logics through incremental SAT. KI - Künstl. Intell., 34(3), 389–394. Springer Science and Business Media LLC.
  • Mihindukulasooriya, N., Dubey, M., Gliozzo, A., Lehmann, J., Ngomo, A.-C. N., & Usbeck, R. (2021). SeMantic AnsweR Type prediction task (SMART) at ISWC 2020 Semantic Web Challenge. arXiv.
  • Mihindukulasooriya, N., Dubey, M., Gliozzo, A., Lehmann, J., Ngomo, A.-C. N., & Usbeck, R. (2020). SeMantic AnsweR Type prediction task (SMART) at ISWC 2020 Semantic Web Challenge. Retrieved from https://arxiv.org/abs/2012.00555
  • Mohamed, H., Fathalla, S., Lehmann, J., & Jabeen, H. (2020). OWLStats: Distributed computation of OWL dataset statistics. In 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). Melbourne, Australia: IEEE.
  • Mohamed, H., Fathalla, S., Lehmann, J., & Jabeen, H. (2020). A distributed approach for parsing large-scale OWL datasets. In Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. Budapest, Hungary: SCITEPRESS - Science and Technology Publications.
  • Mühlbauer, S., Apel, S., & Siegmund, N. (2020). Identifying Software Performance Changes Across Variants and Versions. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp. 611–622).
  • Müller-Mall, S. (2020). guillemotright Twitterstürme. Schmähung--Provokation--Stigma. Medien und Formen der Herabsetzung guillemotleft, in: Lea Hagedorn/Felix Prautzsch/Marina Münkler (Hg.): Schmähung--Provokation--Stigma. Medien und Formen der Herabsetzung, Online-Katalog, Kat, (65).
  • Müller-Mall, S. (2020). Freiheit und Kalkül. Die Politik der Algorithmen.
  • Müller-Mall, S. (2020). Algorithmen sind politisch. Wir müssen lernen, damit umzugehen.
  • Müller-Mall, S. (2020). Freiheit und Kalkül. Die Politik der Algorithmen. Reclam Verlag.
  • Müller-Mall, S. (2020). Die Öffentlichkeit herabsetzender Äußerungen. Verfassungsrechtliche Perspektiven entlang digitaler Transformationen von Öffentlichkeit. In Digitale Transformationen der Öffentlichkeit (pp. 78–100). Velbrück Wissenschaft.
  • Mulang’, I. O., Singh, K., Prabhu, C., Nadgeri, A., Hoffart, J., & Lehmann, J. (2020). Evaluating the impact of knowledge graph context on entity disambiguation models. arXiv.
  • Musyaffa, F. A., Lehmann, J., & Jabeen, H. (2020). Cross-administration comparative analysis of open fiscal data. In Proceedings of the 13th International Conference on Theory and Practice of Electronic Governance. Athens Greece: ACM.
  • Musyaffa, F. A., Vidal, M.-E., Orlandi, F., Lehmann, J., & Jabeen, H. (2020). IOTA: Interlinking of heterogeneous multilingual open fiscal DaTA. Expert Syst. Appl., 147(113135), 113135. Elsevier BV.
  • Nair, V., Yu, Z., Menzies, T., Siegmund, N., & Apel, S. (2020). Finding faster configurations using FLASH. IEEE Trans. Softw. Eng., 46(7), 794–811. Institute of Electrical and Electronics Engineers (IEEE).
  • Nayyeri, M., Vahdati, S., Zhou, X., Shariat Yazdi, H., & Lehmann, J. (2020). Embedding-based recommendations on scholarly knowledge graphs. In The Semantic Web, Lecture notes in computer science (pp. 255–270). Cham: Springer International Publishing.
  • Nayyeri, M., Xu, C., Vahdati, S., Vassilyeva, N., Sallinger, E., Yazdi, H. S., & Lehmann, J. (2020). Fantastic knowledge graph embeddings and how to find the right space for them. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 438–455). Cham: Springer International Publishing.
  • Nayyeri, M., Zhou, X., Vahdati, S., Izanloo, R., Yazdi, H. S., & Lehmann, J. (2020). Let the margin SlidE$pm$ for knowledge graph embeddings via a correntropy objective function. In 2020 International Joint Conference on Neural Networks (IJCNN). Glasgow, United Kingdom: IEEE.
  • Nedelchev, R., Lehmann, J., & Usbeck, R. (2020). Language Model Transformers as Evaluators for Open-domain Dialogues. In Proceedings of the 28th International Conference on Computational Linguistics. International Committee on Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/2020.coling-main.599
  • Nedelchev, R., Lehmann, J., & Usbeck, R. (2020). Treating Dialogue Quality Evaluation as an Anomaly Detection Problem. In International Conference on Language Resources and Evaluation.
  • Nsonga, B., Niemann, M., Frohlich, J., Staib, J., Gumhold, S., & Scheuermann, G. (2020). Detection and visualization of splat and antisplat events in turbulent flows. IEEE Trans. Vis. Comput. Graph., 26(11), 3147–3162. Institute of Electrical and Electronics Engineers (IEEE).
  • Nsonga, B., Scheuermann, G., Gumhold, S., Ventosa-Molina, J., Koschichow, D., & Frohlich, J. (2020). Analysis of the near-wall flow in a turbine cascade by splat visualization. IEEE Trans. Vis. Comput. Graph., 26(1), 719–728. Institute of Electrical and Electronics Engineers (IEEE).
  • Oeste, S., Vef, M.-A., Soysal, M., Nagel, W. E., Brinkmann, A., & Streit, A. (2020). ADA-FS—Advanced Data Placement via Ad hoc File Systems at Extreme Scales. In Software for Exascale Computing-SPPEXA 2016-2019 (pp. 29–59). Springer International Publishing.
  • Okhrin, O., Trimborn, S., & Waltz, M. (2020). GofCopula: Goodness-of-fit tests for copulae. SSRN Electron. J.. Elsevier BV.
  • Ostropolski-Nalewaja, P., Marcinkowski, J., Carral, D., & Rudolph, S. (2020). A Journey to the Frontiers of Query Rewritability. CoRR, abs/2012.11269. Retrieved from https://arxiv.org/abs/2012.11269
  • Pampel, H., Ferguson, L. M., Messerschmidt, R., & Faensen, K. (2020). Indikatoren für Open Science: Diskussionspapier des Helmholtz Open Science Office. Helmholtz Open Science Office.
  • Payrosangari, S., Sadeghi, A., Graux, D., & Lehmann, J. (2020). Meta-hyperband: Hyperparameter optimization with meta-learning and coarse-to-fine. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 335–347). Cham: Springer International Publishing.
  • Pippel, M., Jebb, D., Patzold, F., Winkler, S., Vogel, H., Myers, G., Hiller, M., et al. (2020). A highly contiguous genome assembly of the bat hawkmoth Hyles vespertilio (Lepidoptera: Sphingidae). Gigascience, 9(1). Oxford University Press (OUP).
  • Platow, B. (2020). Gott mit seinem perfekten Ebendbild zu konfrontieren. . Religionspädagogische Beiträge, 82, 37–47.
  • Pott, J., Beutner, F., Horn, K., Kirsten, H., Olischer, K., Wirkner, K., Loeffler, M., et al. (2020). Genome-wide analysis of carotid plaque burden suggests a role of IL5 in men. PLoS One, 15(5), e0233728. Public Library of Science (PLoS).
  • Prager, R. P., Trautmann, H., Wang, H., Back, T. H. W., & Kerschke, P. (2020). Per-instance configuration of the modularized CMA-ES by means of classifier chains and exploratory landscape analysis. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI). Canberra, ACT, Australia: IEEE.
  • Prakken, H., & others. (2020). Timed abstract dialectical frameworks: A simple translation-based approach. Computational Models of Argument: Proceedings of COMMA 2020, 326, 103. IOS Press.
  • Przybilla, J., Ahnert, P., Bogatsch, H., Bloos, F., Brunkhorst, F. M., Group, S. C. C. T., Group, P. S., et al. (2020). Markov state modelling of disease courses and mortality risks of patients with community-acquired pneumonia. J. Clin. Med., 9(2), 393. MDPI AG.
  • Rivas, A., Grangel-González, I., Collarana, D., Lehmann, J., & Vidal, M.-E. (2020). Unveiling relations in the industry 4.0 standards landscape based on knowledge graph embeddings. arXiv.
  • Rode, M., Teren, A., Wirkner, K., Horn, K., Kirsten, H., Loeffler, M., Scholz, M., et al. (2020). Genome-wide association analysis of pulse wave velocity traits provide new insights into the causal relationship between arterial stiffness and blood pressure. PLoS One, 15(8), e0237237.
  • Rosch, S., Rommel, K.-P., Scholz, M., Thiele, H., & Lurz, P. (2020). Transcriptomic research in heart failure with preserved ejection fraction: Current state and future perspectives. Card. Fail. Rev., 6, e24. Radcliffe Group Ltd.
  • Rose, J., & Lehmann, J. (2020). CASQAD -- A new dataset for context-aware spatial question answering. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 3–17). Cham: Springer International Publishing.
  • Rosolowski, M., Oberle, V., Ahnert, P., Creutz, P., Witzenrath, M., Kiehntopf, M., Loeffler, M., et al. (2020). Dynamics of cytokines, immune cell counts and disease severity in patients with community-acquired pneumonia - Unravelling potential causal relationships. Cytokine, 136(155263), 155263. Elsevier BV.
  • Rost, C., Thor, A., Fritzsche, P., Gomez, K., & Rahm, E. (2020). Evolution Analysis of Large Graphs with Gradoop. In Machine Learning and Knowledge Discovery in Databases (pp. 402–408). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-030-43823-4_33
  • Rudolph, S., & Marreiros, G. (Eds.). (2020). Proceedings of the 9th European Starting AI Researchers’ Symposium 2020 co-located with 24th European Conference on Artificial Intelligence (ECAI 2020), Santiago Compostela, Spain, August, 2020. CEUR Workshop Proceedings, CEUR Workshop Proceedings (Vol. 2655). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-2655
  • Saeedi, A., Peukert, E., & Rahm, E. (2020). Incremental Multi-source Entity Resolution for Knowledge Graph Completion. In .
  • Say, A., Fathalla, S., Vahdati, S., Lehmann, J., & Auer, S. (2020). Semantic representation of physics research data. In Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. Budapest, Hungary: SCITEPRESS - Science and Technology Publications.
  • Say, Z., Fathalla, S., Vahdati, S., Lehmann, J., & Auer, S. (2020). Ontology design for pharmaceutical research outcomes. In Digital Libraries for Open Knowledge, Lecture notes in computer science (pp. 119–132). Cham: Springer International Publishing.
  • Schäpermeier, L., Grimme, C., & Kerschke, P. (2020). One PLOT to show them all: Visualization of efficient sets in multi-objective landscapes. In Parallel Problem Solving from Nature -- PPSN XVI, Lecture notes in computer science (pp. 154–167). Cham: Springer International Publishing.
  • Schirm, S., Ahnert, P., Berger, S., Nouailles, G., Wienhold, S.-M., Müller-Redetzky, H., Suttorp, N., et al. (2020). A biomathematical model of immune response and barrier function in mice with pneumococcal lung infection. PLoS One, 15(12), e0243147. Public Library of Science (PLoS).
  • Schirm, S., & Scholz, M. (2020). A biomathematical model of human erythropoiesis and iron metabolism. Sci. Rep., 10(1), 8602. Springer Science and Business Media LLC.
  • Schneider, M., & Jokisch, O. (2020). Towards a Robust Analysis and Classification of Dog Barking. In A. Wendemuth, R. Böck, & I. Siegert (Eds.), Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2020 (pp. 117–124). TUDpress, Dresden. Retrieved from https://www.essv.de/pdf/2020_117_124.pdf
  • Seiler, M., Pohl, J., Bossek, J., Kerschke, P., & Trautmann, H. (2020). Deep learning as a competitive feature-free approach for automated algorithm selection on the traveling salesperson problem. In Parallel Problem Solving from Nature -- PPSN XVI, Lecture notes in computer science (pp. 48–64). Cham: Springer International Publishing.
  • Seiler, M., Trautmann, H., & Kerschke, P. (2020). Enhancing resilience of deep learning networks by means of transferable adversaries. In 2020 International Joint Conference on Neural Networks (IJCNN). Glasgow, United Kingdom: IEEE.
  • Shao, J., Wang, Q., Wijesinghe, A., & Rahm, E. (2020). ErGAN: Generative adversarial networks for entity resolution. arXiv.
  • Shin, J., Ma, S., Hofer, E., Patel, Y., Vosberg, D. E., Tilley, S., Roshchupkin, G. V., et al. (2020). Global and regional development of the human cerebral cortex: Molecular architecture and occupational aptitudes. Cereb. Cortex, 30(7), 4121–4139. Oxford University Press (OUP).
  • Sodoge, J., Kuhlicke, C., Mahecha, M. D., & de Brito, M. M. (2024). Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany. Natural Hazards and Earth System Sciences, 24(5), 1757–1777. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/nhess-24-1757-2024
  • Stadler, C., Bin, S., Wenige, L., Bühmann, L., & Lehmann, J. (2020). Schema-agnostic SPARQL-driven faceted search benchmark generation. Web Semant., 65(100614), 100614. Elsevier BV.
  • Starke, S., Eckert, C., Zwanenburg, A., Speidel, S., Löck, S., & Leger, S. (2020). An Integrative Analysis of Image Segmentation and Survival of Brain Tumour Patients. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (pp. 368–378). Springer International Publishing. Retrieved from https://doi.org/10.1007/978-3-030-46640-4_35
  • Starke, S., Leger, S., Zwanenburg, A., Leger, K., Lohaus, F., Linge, A., Schreiber, A., et al. (2020). 2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma. Sci. Rep., 10(1), 15625. Springer Science and Business Media LLC.
  • Steinhoff, V., Kerschke, P., Aspar, P., Trautmann, H., & Grimme, C. (2020). Multiobjectivization of local search: Single-objective optimization benefits from multi-objective gradient descent. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI). Canberra, Australia: IEEE.
  • Suckert, T., Müller, J., Beyreuther, E., Azadegan, B., Brüggemann, A., Bütof, R., Dietrich, A., et al. (2020). High-precision image-guided proton irradiation of mouse brain sub-volumes. Radiotherapy and Oncology, 146, 205–212. Elsevier.
  • Syed, S., Baff, R. E., Kiesel, J., Khatib, K. A., Stein, B., & Potthast, M. (2020). News Editorials: Towards Summarizing Long Argumentative Texts. In Proceedings of the 28th International Conference on Computational Linguistics. International Committee on Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/2020.coling-main.470
  • Syed, S., Chen, W.-F., Hagen, M., Stein, B., Wachsmuth, H., & Potthast, M. (2020). Task Proposal: Abstractive Snippet Generation for Web Pages. In 13th International Conference on Natural Language Generation (INLG 2020) (pp. 237–241). Association for Computational Linguistics. Retrieved from https://aclanthology.org/2020.inlg-1.30/
  • Teren, A., Vogel, A., Beutner, F., Gielen, S., Burkhardt, R., Scholz, M., Thiery, J., et al. (2020). Relationship between fermented dairy consumption, circulating short-chain acylcarnitines and angiographic severity of coronary artery disease. Nutr. Metab. Cardiovasc. Dis., 30(10), 1662–1672. Elsevier BV.
  • Thakkar, H., Angles, R., Rodriguez, M., Mallette, S., & Lehmann, J. (2020). Let’s build Bridges, not Walls: SPARQL Querying of TinkerPop Graph Databases with Sparql-Gremlin. In 2020 IEEE 14th International Conference on Semantic Computing (ICSC). San Diego, CA, USA: IEEE.
  • Ulbricht, M., Thimm, M., & Brewka, G. (2020). Handling and measuring inconsistency in non-monotonic logics. Artif. Intell., 286(103344), 103344. Elsevier BV.
  • Vargis, T. R., & Ghiasvand, S. (2022). A Light-weight and Unsupervised Method for Near Real-time Behavioral Analysis using Operational Data Measurement. In The International Conference for High Performance Computing, Networking, Storage, and Analysis. Dallas, Texas, USA. Retrieved from https://sc22.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost131.html
  • Vatsalan, D., Christen, P., & Rahm, E. (2020). Incremental clustering techniques for multi-party Privacy-Preserving Record Linkage. Data Knowl. Eng., 128(101809), 101809. Elsevier BV.
  • Vay, J.-L., Sagan, D., Huebl, A., Thévenet, M., Lehe, R., Ng, C.-K., Vincenti, H., et al. (2020). End-to-End Virtual Accelerators (EVA). submitted to Snowmass21.
  • Völske, M., Bevendorff, J., Kiesel, J., Stein, B., Fröbe, M., Hagen, M., & Potthast, M. (2020). Towards an open web index: Lessons from the past. In . Zenodo.
  • Völske, M., Bevendorff, J., Kiesel, J., Stein, B., Fröbe, M., Hagen, M., & Potthast, M. (2020). Web Archive Analytics: Infrastructure & Applications @ Webis (extended abstract). In A. Wagner, C. Guetl, M. Granitzer, & S. Voigt (Eds.), 2nd International Symposium on Open Search Technology (OSSYM 2020). International Open Search Symposium.
  • Vogelezang, S., Bradfield, J. P., Ahluwalia, T. S., Curtin, J. A., Lakka, T. A., Grarup, N., Scholz, M., et al. (2020). Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genet., 16(10), e1008718. Public Library of Science (PLoS).
  • Weigert, M., Schmidt, U., Haase, R., Sugawara, K., & Myers, G. (2020). Star-convex polyhedra for 3D object detection and segmentation in microscopy. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp. 3666–3673).
  • Wiegmann, M., Kersten, J., Klan, F., Potthast, M., & Stein, B. (2020). Analysis of Detection Models for Disaster-Related Tweets. In .
  • Wiegmann, M., Stein, B., & Potthast, M. (2020). Overview of the Celebrity Profiling Task at PAN 2020. In L. Cappellato, C. Eickhoff, N. Ferro, & A. Névéol (Eds.), Working Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 22-25, 2020, CEUR Workshop Proceedings (Vol. 2696). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-2696/paper_259.pdf
  • Winkler, T. W., Grassmann, F., Brandl, C., Kiel, C., Günther, F., Strunz, T., Weidner, L., et al. (2020). Genome-wide association meta-analysis for early age-related macular degeneration highlights novel loci and insights for advanced disease. BMC Med. Genomics, 13(1), 120. Springer Science and Business Media LLC.
  • Xavier, L. C. P., da Silva, S. M. O., Carvalho, T. M. N., Filho, J. D. P., & de Assis de Souza Filho, F. (2020). Use of Machine Learning in Evaluation of Drought Perception in Irrigated Agriculture: The Case of an Irrigated Perimeter in Brazil. Water, 12(6), 1546. Multidisciplinary Digital Publishing Institute.
  • Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H. S., & Lehmann, J. (2020). TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation. In Proceedings of the 28th International Conference on Computational Linguistics. International Committee on Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/2020.coling-main.139
  • Xu, C., Nayyeri, M., Chen, Y.-Y., & Lehmann, J. (2020). Knowledge graph embeddings in geometric algebras. arXiv.
  • Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H., & Lehmann, J. (2020). Temporal knowledge graph completion based on time series Gaussian embedding. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 654–671). Cham: Springer International Publishing.
  • Xu, Z., Mikesell, T. D., Umlauft, J., & Gribler, G. (2020). Rayleigh-wave multicomponent crosscorrelation-based source strength distribution inversions. Part 2: a workflow for field seismic data. Geophysical Journal International, 222(3), 2084–2101. Oxford University Press.
  • Yang, M., Gaggl, S. A., & Rudolph, S. (2020). Neva-Extension Visualization for Argumentation Frameworks. In COMMA (pp. 477–478).
  • Zafar, H., Dubey, M., Lehmann, J., & Demidova, E. (2020). IQA: Interactive query construction in semantic question answering systems. Web Semant., 64(100586), 100586. Elsevier BV.
  • Zafar, H., Tavakol, M., & Lehmann, J. (2020). Distantly Supervised Question Parsing. Retrieved from https://arxiv.org/abs/1909.12566
  • Zangerle, E., Mayerl, M., Potthast, M., & Stein, B. (2020). Overview of the Style Change Detection Task at PAN 2020. CLEF (Working Notes), 93.
  • Zeckzer, D., Hausdorf, A., Hinzmann, N., Müller, L., & Wiegreffe, D. (2020). Masakari: visualization supported statistical analysis of genome segmentations. BMC Bioinformatics, 21(1), 437. Springer Science and Business Media LLC.
  • Zschaeck, S., Li, Y., Lin, Q., Beck, M., Amthauer, H., Bauersachs, L., Hajiyianni, M., et al. (2020). Prognostic value of baseline [18F]-fluorodeoxyglucose positron emission tomography parameters MTV, TLG and asphericity in an international multicenter cohort of nasopharyngeal carcinoma patients. PloS one, 15(7), e0236841. Public Library of Science San Francisco, CA USA.
  • Zscheyge, M., Boehm, R., Hornig, A., Gerritzen, J., & Gude, M. (2020). Rate dependent non-linear mechanical behaviour of continuous fibre-reinforced thermoplastic composites--Experimental characterisation and viscoelastic-plastic damage modelling. Materials & Design, 193, 108827. Elsevier.
  • Zschörnig, T., Windolph, J., Wehlitz, R., & Franczyk, B. (2020). A cloud-based analytics architecture for the application of online machine learning algorithms on data streams in consumer-centric internet of things domains. In Proceedings of the 5th International Conference on Internet of Things, Big Data and Security. Prague, Czech Republic: SCITEPRESS - Science and Technology Publications.
funded by:
Gefördert vom Bundesministerium für Bildung und Forschung.
Gefördert vom Freistaat Sachsen.