JavaScript is required to use this site. Please enable JavaScript in your browser settings.

2021

  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 49(W1), W530-W534. Oxford University Press (OUP).
  • Akiki, C., Fröbe, M., Hagen, M., & Potthast, M. (2021). Learning to Rank Arguments with Feature Selection. In G. Faggioli, N. Ferro, A. Joly, M. Maistro, & F. Piroi (Eds.), Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, Bucharest, Romania, September 21st - to - 24th, 2021, CEUR Workshop Proceedings (Vol. 2936, pp. 2292–2301). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-2936/paper-207.pdf
  • Akiki, C., & Potthast, M. (2021). BERTian Poetics: Constrained Composition with Masked LMs. arXiv.
  • Al-Fatlawi, A., Malekian, N., Garc’ia, S., Henschel, A., Kim, I., Dahl, A., Jahnke, B., et al. (2021). Deep learning improves pancreatic cancer diagnosis using RNA-based variants. Cancers (Basel), 13(11), 2654. MDPI AG.
  • Alaghbari, S., Mitschick, A., Blichmann, G., Voigt, M., & Dachselt, R. (2021). A user-centered approach to gamify the manual creation of training data for machine learning. I-Com, 20(1), 33–48. Walter de Gruyter GmbH.
  • Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferrandis, C. M., Muennighoff, N., et al. (2023). SantaCoder: don’t reach for the stars!. arXiv.
  • Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., & Kovtunova, A. (2021). Finding good proofs for Description Logic entailments using recursive quality measures. In Automated Deduction -- CADE 28, Lecture notes in computer science (pp. 291–308). Cham: Springer International Publishing.
  • Alshomary, M., Gurcke, T., Syed, S., Heinisch, P., Spliethöver, M., Cimiano, P., Potthast, M., et al. (2021). Key Point Analysis via Contrastive Learning and Extractive Argument Summarization. In K. Al-Khatib, Y. Hou, & M. Stede (Eds.), 8th Workshop on Argument Mining (ArgMining 2021) at EMNLP (pp. 184–189). Association for Computational Linguistics.
  • Alshomary, M., Gurcke, T., Syed, S., Heinrich, P., Spliethöver, M., Cimiano, P., Potthast, M., et al. (2021). Key Point Analysis via Contrastive Learning and Extractive Argument Summarization. arXiv.
  • Alshomary, M., Syed, S., Dhar, A., Potthast, M., & Wachsmuth, H. (2021). Argument undermining: Counter-argument generation by attacking weak premises. arXiv.
  • Anantharaman, R., Abdelrehim, A., Martinuzzi, F., Yalburgi, S., Saba, E., Fischer, K., Hertz, G., et al. (2021). Composable and reusable neural surrogates to predict system response of causal model components.
  • Anders, J., Petruschke, H., Jehmlich, N., Haange, S.-B., von Bergen, M., & Stadler, P. F. (2021). A workflow to identify novel proteins based on the direct mapping of peptide-spectrum-matches to genomic locations. BMC Bioinformatics, 22(1), 277. Springer Science and Business Media LLC.
  • Aspar, P., Kerschke, P., Steinhoff, V., Trautmann, H., & Grimme, C. (2021). Multi$^3$: Optimizing multimodal single-objective continuous problems in the multi-objective space by means of multiobjectivization. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 311–322). Cham: Springer International Publishing.
  • Atigh, M. G., Keller-Ressel, M., & Mettes, P. (2021). Hyperbolic Busemann Learning with ideal prototypes. arXiv.
  • Ayala, D., Hernandez, I., Ruiz, D., & Rahm, E. (2021). Towards the smart use of embedding and instance features for property matching. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). Chania, Greece: IEEE.
  • Baader, F., Koopmann, P., MICHEL, F., Turhan, A.-Y., & ZARRIESS, B. (2021). Efficient TBox Reasoning with Value Restrictions using the wer Reasoner. Theory and Practice of Logic Programming, 22, 1–29.
  • Baader, F., & Rydval, J. (2021). An algebraic view on p-admissible concrete domains for lightweight description logics. In Logics in Artificial Intelligence, Lecture notes in computer science (pp. 194–209). Cham: Springer International Publishing.
  • Bamme, J., & Sbalzarini, I. F. (2021). A Mathematical Definition of Particle Methods.
  • Baumann, R., Brewka, G., & Ulbricht, M. (2021). Comparing weak admissibility semantics to their Dung-style counterparts (extended abstract). In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Montreal, Canada: International Joint Conferences on Artificial Intelligence Organization.
  • Baumann, R., & Ulbricht, M. (2021). On cycles, attackers and supporters --- A contribution to the investigation of dynamics in abstract argumentation. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Montreal, Canada: International Joint Conferences on Artificial Intelligence Organization.
  • Baumann, R., & Ulbricht, M. (2021). Choices and their consequences - explaining acceptable sets in abstract argumentation frameworks. In Proceedings of the Eighteenth International Conference on Principles of Knowledge Representation and Reasoning. Hanoii, Vietnam: International Joint Conferences on Artificial Intelligence Organization.
  • Behme, A., & Strietzel, P. L. (2021). A $2~times ~2$ random switching model and its dual risk model. Queueing Syst., 99(1-2), 27–64. Springer Science and Business Media LLC.
  • Berkemer, S. J., Höner zu Siederdissen, C., & Stadler, P. F. (2021). Compositional properties of alignments. Math. Comput. Sci., 15(4), 609–630. Springer Science and Business Media LLC.
  • Bethke, F., Pausch, R., Stiller, P., Debus, A., Bussmann, M., & Hoffmann, N. (2021). Invertible Surrogate Models: Joint surrogate modelling and reconstruction of Laser-Wakefield Acceleration by invertible neural networks. arXiv.
  • Beuchel, C., Kirsten, H., Ceglarek, U., & Scholz, M. (2021). Metabolite-Investigator: an integrated user-friendly workflow for metabolomics multi-study analysis. Bioinformatics, 37(15), 2218–2220. Oxford University Press (OUP).
  • Bevendorff, J., Chulvi, B., De La Peña Sarracén, G. L., Kestemont, M., Manjavacas, E., Markov, I., Mayerl, M., et al. (2021). Overview of PAN 2021: Authorship Verification, Profiling Hate Speech Spreaders on Twitter, and Style Change Detection. In Experimental IR Meets Multilinguality, Multimodality, and Interaction (pp. 419–431). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-030-85251-1_26
  • Bevendorff, J., Chulvi, B., De La Peña Sarracén, G. L., Kestemont, M., Manjavacas, E., Markov, I., Mayerl, M., et al. (2021). Overview of PAN 2021: Authorship verification, profiling hate speech spreaders on twitter, and style change detection. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 419–431). Cham: Springer International Publishing.
  • Bevendorff, J., Potthast, M., & Stein, B. (2021). FastWARC: Optimizing large-scale web archive analytics. arXiv.
  • Beyer, F., Zhang, R., Scholz, M., Wirkner, K., Loeffler, M., Stumvoll, M., Villringer, A., et al. (2021). Higher BMI, but not obesity-related genetic polymorphisms, correlates with lower structural connectivity of the reward network in a population-based study. Int. J. Obes. (Lond), 45(3), 491–501. Springer Science and Business Media LLC.
  • Bhalachandra, S., Daley, C., & Vergara, V. M. (Eds.). (2021). Accelerator Programming Using Directives: 8th International Workshop, WACCPD 2021, Virtual Event, November 14, 2021, Proceedings. Berlin, Heidelberg: Springer-Verlag.
  • Blecha, C., Hergl, C., Nagel, T., & Scheuermann, G. (2021). Visual analysis of the relation between stiffness tensor and the Cauchy-green tensor. The Eurographics Association.
  • Blumer, M., Brown, T., Freitas, M. B., Destro, A. L., Oliveira, J. A., Morales, A., Schell, T., et al. (2021, October). Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. bioRxiv.
  • Bodirsky, M., Feller, T., Knauer, S., & Rudolph, S. (2021). On Logics and Homomorphism Closure. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Rome, Italy: IEEE.
  • Bodirsky, M., Knäuer, S., & Rudolph, S. (2021). Datalog-expressibility for monadic and Guarded Second-order Logic. In . Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
  • Bolz, S. N., Salentin, S., Jennings, G., Haupt, V. J., Sterneckert, J., & Schroeder, M. (2021). Structural binding site comparisons reveal Crizotinib as a novel LRRK2 inhibitor. Comput. Struct. Biotechnol. J., 19, 3674–3681. Elsevier BV.
  • Bondarenko, A., Fröbe, M., Gohsen, M., Günther, S., Kiesel, J., Schwerter, J., Syed, S., et al. (2021). Webis at TREC 2021: Deep Learning, Health Misinformation, and Podcasts Tracks.
  • Bondarenko, A., Gienapp, L., Fröbe, M., Beloucif, M., Ajjour, Y., Panchenko, A., Biemann, C., et al. (2021). Overview of Touché 2021: Argument Retrieval. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 450–467). Cham: Springer International Publishing.
  • Bozhanova, N. G., Harp, J. M., Bender, B. J., Gavrikov, A. S., Gorbachev, D. A., Baranov, M. S., Mercado, C. B., et al. (2021). Computational redesign of a fluorogen activating protein with Rosetta. PLoS Comput. Biol., 17(11), e1009555. Public Library of Science (PLoS).
  • Brandmeier, M., & Cherif, E. (2021). Taking the pulse of the Amazon rainforest by fusing multitemporal Sentinel 1 and 2 data for advanced deep-learning. EGU General Assembly Conference Abstracts, EGU21–3749.
  • Brauckmann, A., Goens, A., & Castrillon, J. (2021). PolyGym: Polyhedral optimizations as an environment for reinforcement learning. In 2021 30th International Conference on Parallel Architectures and Compilation Techniques (PACT). Atlanta, GA, USA: IEEE.
  • Breitwieser, K., Lahnala, A., Welch, C., Flek, L., & Potthast, M. (2021). Modeling Proficiency with Implicit User Representations. arXiv. Retrieved from https://arxiv.org/abs/2110.08011
  • Brockmoeller, S., Echle, A., Ghaffari Laleh, N., Eiholm, S., Malmstrøm, M. L., Plato Kuhlmann, T., Levic, K., et al. (2021). Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer. The Journal of Pathology, 256(3), 269–281. Wiley. Retrieved from http://dx.doi.org/10.1002/path.5831
  • Brown, B. P., Mendenhall, J., Geanes, A. R., & Meiler, J. (2021). General Purpose Structure-Based Drug Discovery Neural Network Score Functions with Human-Interpretable Pharmacophore Maps. Journal of Chemical Information and Modeling, 61(2), 603–620. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.1021/acs.jcim.0c01001
  • Büschel, W., Lehmann, A., & Dachselt, R. (2021). MIRIA: A mixed reality toolkit for the in-situ visualization and analysis of spatio-temporal interaction data. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Yokohama Japan: ACM.
  • Carvalho, T. M., da Silva, S. M. O., Araújo, C. B., Frota, R., Xavier, L. C., Bezerra, B., Almeida, E., et al. (2021). Vulnerability index to COVID-19: Fortaleza, Brazil study case. Engenharia Sanitaria e Ambiental, 26, 731–739. Associação Brasileira de Engenharia Sanitária e Ambiental-ABES.
  • Carvalho, T. M. N., & de Assis de Souza Filho, F. (2021). Variational Mode Decomposition Hybridized With Gradient Boost Regression for Seasonal Forecast of Residential Water Demand. Water Resources Management, 35(10), 3431–3445. Springer Netherlands.
  • Carvalho, T. M. N., & de Assis de Souza Filho, F. (2021). A data-driven model to evaluate the medium-term effect of contingent pricing policies on residential water demand. Environmental Challenges, 3, 100033. Elsevier.
  • Carvalho, T. M. N., de Assis de Souza Filho, F., & de Melo Lopes, T. M. X. (2021). Detecção de secas e visualização de padrões climáticos com aprendizado de máquina. ABRHidro-Associação Brasileira de Recursos Hidrícos, http://www. abrhidro. org. br/xxivsbrh.
  • Carvalho, T. M. N., de Assis de Souza Filho, F., & Porto, V. C. (2021). Urban Water Demand Modeling Using Machine Learning Techniques: Case Study of Fortaleza, Brazil. Journal of Water Resources Planning and Management, 147(1), 05020026. American Society of Civil Engineers.
  • Ceglarek, U., Schellong, P., Rosolowski, M., Scholz, M., Willenberg, A., Kratzsch, J., Zeymer, U., et al. (2021). The novel cystatin C, lactate, interleukin-6, and N-terminal pro-B-type natriuretic peptide (CLIP)-based mortality risk score in cardiogenic shock after acute myocardial infarction. Eur. Heart J., 42(24), 2344–2352. Oxford University Press (OUP).
  • Christopher Schröder, A. N. (2021). Uncertainty-based Query Strategies for Active Learning with Transformers.
  • Costa, M., Oliveira, J., C. da Silva, W., Sen, R., Fallmann, J., Stadler, P., & Walter, M. (2021). Machine learning studies of non-coding RNAs based on artificially constructed training data. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies. Online Streaming, --- Select a Country ---: SCITEPRESS - Science and Technology Publications.
  • Curry, J., Mukherjee, S., & Turner, K. (2021). How Many Directions Determine a Shape and other Sufficiency Results for Two Topological Transforms. Retrieved from https://arxiv.org/abs/1805.09782
  • de Melo Lopes, T. M. X., da Silva, S. M. O., de Oliveira, L. M., Carvalho, T. M. N., Rodrigues, B. A. M., & Frota, R. L. (2021). Modelagem dinâmica espacial aplicada à previsão da demanda hídrica. ABRHidro-Associação Brasileira de Recursos Hidrícos, http://www. abrhidro. org. br/xxivsbrh.
  • de Melo Lopes, T. M. X., da Silva, S. M. O., Frota, R. L., & Carvalho, T. M. N. (2021). Mapeamento da produção científica internacional sobre previsão da demanda hídrica urbana. ABRHidro-Associação Brasileira de Recursos Hidrícos, http://www. abrhidro. org. br/xxivsbrh.
  • Del Alamo, D., Jagessar, K. L., Meiler, J., & Mchaourab, H. S. (2021). Methodology for rigorous modeling of protein conformational changes by Rosetta using DEER distance restraints. PLoS Comput. Biol., 17(6), e1009107. Public Library of Science (PLoS).
  • del Alamo, D., Sala, D., Mchaourab, H. S., & Meiler, J. (2021). Sampling the conformational landscapes of transporters and receptors with AlphaFold2. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2021.11.22.469536
  • Diebel-Fischer, H. (2021). Ethics and Quantification: Disentangling a Relationship.
  • Diebel-Fischer, H. (2021). Technisch realisierte Ethik? Anthropologische Perspektiven auf das Verhältnis von Mensch und Maschine.
  • Donner, M.-T. (2021). Teststatistische Überprüfung und Validierung der Magna Employee Opinion Survey (Master thesis). Karl-Franzens-Universität Graz.
  • Dvov rák, W., Ulbricht, M., & Woltran, S. (2021). Recursion in abstract argumentation is hard --- on the complexity of semantics based on weak admissibility. Proc. Conf. AAAI Artif. Intell., 35(7), 6288–6295. Association for the Advancement of Artificial Intelligence (AAAI).
  • Ebel, P., Orlovska, J., Hünemeyer, S., Wickman, C., Vogelsang, A., & Söderberg, R. (2021). Automotive UX design and data-driven development: Narrowing the gap to support practitioners. Transportation Research Interdisciplinary Perspectives, 11, 100455. Retrieved from https://www.sciencedirect.com/science/article/pii/S2590198221001603
  • Ebert, M. P., Meindl-Beinker, N. M., Gutting, T., Maenz, M., Betge, J., Schulte, N., Zhan, T., et al. (2022). Second-line therapy with nivolumab plus ipilimumab for older patients with oesophageal squamous cell cancer (RAMONA): a multicentre, open-label phase 2 trial. Lancet Healthy Longev., 3(6), e417-e427. Elsevier BV.
  • Ens, B., Bach, B., Cordeil, M., Engelke, U., Serrano, M., Willett, W., Prouzeau, A., et al. (2021). Grand Challenges in Immersive Analytics. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Yokohama Japan: ACM.
  • Ewald, J., Jansen, P. M., Brunke, S., Hiller, D., Luther, C. H., González-D’iaz, H., Dittrich, M. T., et al. (2021, September). The landscape of toxic intermediates in the metabolic networks of pathogenic fungi reveals targets for antifungal drugs. bioRxiv.
  • Ewald, J., Rivieccio, F., Radosa, L. s, Schuster, S., Brakhage, A. A., & Kaleta, C. (2021). Dynamic optimization reveals alveolar epithelial cells as key mediators of host defense in invasive aspergillosis. PLoS Comput. Biol., 17(12), e1009645. Public Library of Science (PLoS).
  • Falakh, F. M., Rudolph, S., & Sauerwald, K. (2021). Semantic characterizations of general belief base revision. arXiv.
  • Ficorella, C., Eichholz, H. M., Sala, F., Vázquez, R. M., Osellame, R., & Käs, J. A. (2021). Intermediate filaments ensure resiliency of single carcinoma cells, while active contractility of the actin cortex determines their invasive potential. New Journal of Physics, 23(8), 083028. IOP Publishing.
  • Fischer, M., Komlossy, K., Stein, B., Potthast, M., & Hagen, M. (2021). Identifying queries in instant search logs. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Virtual Event Canada: ACM.
  • Flegel, T., Neumann, A., Holst, A.-L., Kretzschmann, O., Loderstedt, S., Tästensen, C., Gutmann, S., et al. (2024). Machine learning algorithms predict canine structural epilepsy with high accuracy. Frontiers in Veterinary Science, 11. Retrieved from https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2024.1406107
  • Franke, M., Sehili, Z., Rohde, F., & Rahm, E. (2021). Evaluation of hardening techniques for privacy-preserving record linkage. OpenProceedings.org.
  • Frey, J., Götz, F., Hofer, M., & Hellmann, S. (2021). Managing and Compiling Data Dependencies for Semantic Applications Using Databus Client. In International Conference on Metadata and Semantics Research.
  • Frey, M., Nau, M., & Doeller, C. F. (2021). Magnetic resonance-based eye tracking using deep neural networks. Nature Neuroscience, 24(12), 1772–1779. Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1038/s41593-021-00947-w
  • Frey, M., Tanni, S., Perrodin, C., O’Leary, A., Nau, M., Kelly, J., Banino, A., et al. (2021). Interpreting wide-band neural activity using convolutional neural networks. eLife, 10. eLife Sciences Publications, Ltd. Retrieved from http://dx.doi.org/10.7554/eLife.66551
  • Fröbe, M., Bevendorff, J., Gienapp, L., Völske, M., Stein, B., Potthast, M., & Hagen, M. (2021). CopyCat: Near-duplicates within and between the ClueWeb and the common crawl. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Virtual Event Canada: ACM.
  • Fröbe, M., Günther, S., Probst, M., Potthast, M., & Hagen, M. (2022). Webis-MS-MARCO-Anchor-Texts-22. Zenodo.
  • Fröbe, M., Hagen, M., Bevendorff, J., Völske, M., Stein, B., Schröder, C., Wagner, R., et al. (2021). The impact of main content extraction on near-duplicate detection. arXiv.
  • Gärtner, F., Kühnl, F., Seemann, C. R., Höner Zu Siederdissen, C., Stadler, P. F., Graphs, T. S. of the, & Networks Computer Lab 2018/19. (2021). Superbubbles as an empirical characteristic of directed networks. Netw. Sci. (Camb. Univ. Press), 9(1), 49–58. Cambridge University Press (CUP).
  • Gaggl, S. A., Rudolph, S., & Straß, H. (2021). On the decomposition of abstract dialectical frameworks and the complexity of naive-based semantics. J. Artif. Intell. Res., 70, 1–64. AI Access Foundation.
  • Gatter, T., & Stadler, P. F. (2021). Ry=ut=o: improved multi-sample transcript assembly for differential transcript expression analysis and more. Bioinformatics, 37(23), 4307–4313. Oxford University Press (OUP).
  • Gatter, T., von Löhneysen, S., Fallmann, J., Drozdova, P., Hartmann, T., & Stadler, P. F. (2021). LazyB: fast and cheap genome assembly. Algorithms Mol. Biol., 16(1), 8. Springer Science and Business Media LLC.
  • Gienapp, L., Kircheis, W., Sievers, B., Stein, B., & Potthast, M. (2021). STEREO: Scientific Text Reuse in open access publications. arXiv.
  • Gollasch, D., & Weber, G. (2021). Age-related differences in preferences for using voice assistants. In Mensch und Computer 2021. Ingolstadt Germany: ACM.
  • Gomez, K., Täschner, M., Rostami, M. A., Rost, C., & Rahm, E. (2021). Graph sampling with distributed in-memory dataflow systems. In . Gesellschaft für Informatik, Bonn.
  • Gonzalez, H., George, R., Muzaffar, S., Acevedo, J., Hoppner, S., Mayr, C., Yoo, J., et al. (2021). Hardware acceleration of EEG-based emotion classification systems: A comprehensive survey. IEEE Trans. Biomed. Circuits Syst., 15(3), 412–442. Institute of Electrical and Electronics Engineers (IEEE).
  • Gorski, M., Jung, B., Li, Y., Matias-Garcia, P. R., Wuttke, M., Coassin, S., Thio, C. H. L., et al. (2021). Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline. Kidney Int., 99(4), 926–939. Elsevier BV.
  • Gorski, M., Jung, B., Li, Y., Matias-Garcia, P. R., Wuttke, M., Coassin, S., Thio, C. H., et al. (2021). Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline. Kidney International, 99(4), 926–939. Retrieved from https://www.sciencedirect.com/science/article/pii/S0085253820312394
  • Grimme, C., Kerschke, P., Aspar, P., Trautmann, H., Preuss, M., Deutz, A. H., Wang, H., et al. (2021). Peeking beyond peaks: Challenges and research potentials of continuous multimodal multi-objective optimization. Comput. Oper. Res., 136(105489), 105489. Elsevier BV.
  • Grubitzsch, P., Werner, E., Matusek, D., Stojanov, V., & Hahnel, M. (2021). AI-based transport mode recognition for transportation planning utilizing smartphone sensor data from crowdsensing campaigns. In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). Indianapolis, IN, USA: IEEE.
  • Gulsevin, A., & Meiler, J. (2021). Prediction of amphipathic helix-membrane interactions with Rosetta. PLoS Comput. Biol., 17(3), e1008818. Public Library of Science (PLoS).
  • Guzman, G. E. C., Stadler, P. F., & Fujita, A. (2021). Efficient Laplacian spectral density computations for networks with arbitrary degree distributions. Netw. Sci. (Camb. Univ. Press), 9(3), 312–327. Cambridge University Press (CUP).
  • Haase, R. (2021). Image processing filters for grids of cells analogous to filters processing grids of pixels. Frontiers in Computer Science, 105. Frontiers.
  • Haase, R. (2021). The Fiji Updater, My favorite image analysis tool, by Neubias members. Imaging and Microscopy, (March 2021). Wiley Analytical Science.
  • Hart, F., Okhrin, O., & Treiber, M. (2021). Formulation and validation of a car-following model based on deep reinforcement learning. arXiv.
  • Hart, F., Waltz, M., & Okhrin, O. (2021). Missing velocity in dynamic obstacle avoidance based on Deep Reinforcement Learning. arXiv.
  • Hartiala, J. A., Han, Y., Jia, Q., Hilser, J. R., Huang, P., Gukasyan, J., Schwartzman, W. S., et al. (2021). Genome-wide analysis identifies novel susceptibility loci for myocardial infarction. Eur. Heart J., 42(9), 919–933. Oxford University Press (OUP).
  • Heins, J., Bossek, J., Pohl, J., Seiler, M., Trautmann, H., & Kerschke, P. (2021). On the potential of normalized TSP features for automated algorithm selection. In Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. Virtual Event Austria: ACM.
  • Heinz, C. N., Echle, A., Foersch, S., Bychkov, A., & Kather, J. N. (2022). The future of artificial intelligence in digital pathology - results of a survey across stakeholder groups. Histopathology, 80(7), 1121–1127. Wiley.
  • Hergl, C., Blecha, C., Kretzschmar, V., Raith, F., Günther, F., Stommel, M., Jankowai, J., et al. (2021). Visualization of tensor fields in mechanics. Comput. Graph. Forum, 40(6), 135–161. Wiley.
  • Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., & Sebastiani, F. (Eds.). (2021). 43rd International Conference on IR Research (ECIR 2021). Lecture Notes in Computer Science, Lecture Notes in Computer Science (Vol. 12656). Berlin Heidelberg New York: Springer.
  • Höppner, S., Yan, Y., Dixius, A., Scholze, S., Partzsch, J., Stolba, M., Kelber, F., et al. (2021). The SpiNNaker 2 processing element architecture for hybrid digital neuromorphic computing. arXiv.
  • Hoffmann, H., Baldow, C., Zerjatke, T., Gottschalk, A., Wagner, S., Karg, E., Niehaus, S., et al. (2021). How to predict relapse in leukemia using time series data: A comparative in silico study. PLoS One, 16(11), e0256585. Public Library of Science (PLoS).
  • Huemer, M.-T., Bauer, A., Petrera, A., Scholz, M., Hauck, S. M., Drey, M., Peters, A., et al. (2021). Proteomic profiling of low muscle and high fat mass: a machine learning approach in the KORA S4/FF4 study. J. Cachexia Sarcopenia Muscle, 12(4), 1011–1023. Wiley.
  • Hummel, S. (2021). Chatbots in Forschungsgeleiteter Lehre. FNMA Magazin, 2021(01), 19–20. Verein Forum neue Medien in der Lehre Austria, Graz.
  • Hummel, S. (2021). Learning Analytics – Ein hochschuldidaktisches Begleitprogramm zur prozessorientierten Lernunterstützung. FNMA Magazin, 2021, 21–24. Verein Forum neue Medien in der Lehre Austria, Graz.
  • Hummel, S., Brodacz-Geier, M., Alwis, K., & Monirith, L. (2021). Inclusive Pedagogy: Approaches and Strategies. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 190–211). University of Graz.
  • Hummel, S., Brodacz-Geier, M., Amarasinghe, P., & Fernando, M. (2021). Digital Media and Technology: Tools and Formats for Educational Purposes. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 276–308). University of Graz.
  • Hummel, S., Brodacz-Geier, M., & Anuruddhika, B. (2021). Diversity-Sensitive Classroom Management. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 236–253). University of Graz.
  • Hummel, S., Brodacz-Geier, M., & Dahanayake, S. (2021). Lifeworld-References and Future Prospect. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 162–171). University of Graz.
  • Hummel, S., Brodacz-Geier, M., Ketheeswaran, K., & Monirith, L. (2021). Teaching and Learning in Diversity. Preparation, Realization, Assessment. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 212–235). University of Graz.
  • Hummel, S., Brodacz-Geier, M., Monirith, L., Perera, S., & Chanrajith, U. (2021). Online-Based Lesson Preparation & Conduction. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 309–332). University of Graz.
  • Hummel, S., Brodacz-Geier, M., Perera, K., Siriwardena, M., & Monirith, L. (2021). E-Pedagogy and Digitally Enhanced Learning Environments. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 254–275). University of Graz.
  • Hummel, S., Egger, R., & Reichenstein, S. (2021). Doing Higher Education. University of Graz.
  • Hummel, S., Elias, R., & Kumari, H. (2021). Twenty-First Century Teaching and Learning. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 1–22). University of Graz.
  • Hummel, S., Elias, R., & Seneviratne, D. (2021). Pedagogical Professionalization. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 125–147). University of Graz.
  • Hummel, S., Sheehan, B., & Chathurika, P. (2021). Designing Learning Environments. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 62–74). University of Graz.
  • Hummel, S., Sheehan, B., Monirith, L., Munasinghe, D., & Thilakarathna, S. (2021). Lesson Planning and Methodological Skills: Concepts, Tools and Application. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 23–61). University of Graz.
  • Hummel, S., Sheehan, B., Monirith, L., & Mukunthan, T. (2021). Assessing Learning Results. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 92–124). University of Graz.
  • Hummel, S., Sheehan, B., Munro, A., & Chandrakumara, C. (2021). Self-Determination, Empowerment and Self-Efficacy. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 172–189). University of Graz.
  • Hummel, S., Sheehan, B., Munro, A., & Neranjani, S. (2021). Individual Development and Problem-Solving Skills. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 148–161). University of Graz.
  • Incardona, P., Bianucci, T., & Sbalzarini, I. F. (2021). Distributed Sparse Block Grids on GPUs. In B. L. Chamberlain, A.-L. Varbanescu, H. Ltaief, & P. Luszczek (Eds.), High Performance Computing, Lecture Notes in Computer Science, Volume 12728 (pp. 272–290). Germany: Springer, Berlin [u. a.].
  • Ionescu, B., Müller, H., Druagulinescu, A. M., Idrissi-Yaghir, A., Radzhabov, A., Herrera, A. G. S. de, Andrei, A., et al. (2024). Advancing Multimedia Retrieval in Medical, Social Media and Content Recommendation Applications with ImageCLEF 2024. In N. Goharian, N. Tonellotto, Y. He, A. Lipani, G. McDonald, C. Macdonald, & I. Ounis (Eds.), Advances in Information Retrieval (pp. 44–52). Cham: Springer Nature Switzerland.
  • Ivan, L., Gvirsman, S. D., Haim, M., & Potthast, M. (2021). Don’t Take the Bait: Users’ Engagement with Clickbait and Its Effect on Editorial Considerations.
  • Jakob, L., Vereshchagina, K. P., Tillmann, A., Rivarola-Duarte, L., Axenov-Gribanov, D. V., Bedulina, D. S., Gurkov, A. N., et al. (2021). Thermal reaction norms of key metabolic enzymes reflect divergent physiological and behavioral adaptations of closely related amphipod species. Sci. Rep., 11(1), 4562. Springer Science and Business Media LLC.
  • Kasmanas, J. C., Bartholomäus, A., Corrêa, F. B., Tal, T., Jehmlich, N., Herberth, G., von Bergen, M., et al. (2021). HumanMetagenomeDB: a public repository of curated and standardized metadata for human metagenomes. Nucleic Acids Res., 49(D1), D743-D750. Oxford University Press (OUP).
  • Keller-Ressel, M., & Nargang, S. (2021). The hyperbolic geometry of financial networks. Sci. Rep., 11(1), 4732. Springer Science and Business Media LLC.
  • Kerschke, P., & Grimme, C. (2021). Lifting the multimodality-fog in continuous multi-objective optimization. In Natural Computing Series, Natural computing series (pp. 89–111). Cham: Springer International Publishing.
  • Kestemont, M., Manjavacas, E., Markov, I., Bevendorff, J., Wiegmann, M., Stamatatos, E., Stein, B., et al. (2021). Overview of the cross-domain authorship verification task at PAN 2021. In G. Faggioli, N. Ferro, A. Joly, M. Maistro, & F. Piroi (Eds.), CLEF-WN 2021 - Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings (Vol. 2936, pp. 1743–1759). CEUR-WS.
  • Khatib, K. A., Trautner, L., Wachsmuth, H., Hou, Y., & Stein, B. (2021). Employing Argumentation Knowledge Graphs for Neural Argument Generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/2021.acl-long.366
  • Khouzami, N., Schütze, L., Incardona, P., Kraatz, L., Subic, T., Castrillon, J., & Sbalzarini, I. F. (2021). The OpenPME problem solving environment for numerical simulations. In Computational Science -- ICCS 2021, Lecture notes in computer science (pp. 614–627). Cham: Springer International Publishing.
  • Kieronski, E., & Rudolph, S. (2021). Finite model theory of the triguarded fragment and related logics. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Rome, Italy: IEEE.
  • Kiesel, J., Meyer, L., Kneist, F., Stein, B., & Potthast, M. (2021). An empirical comparison of web page segmentation algorithms. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 62–74). Cham: Springer International Publishing.
  • Kiesel, J., Meyer, L., Potthast, M., & Stein, B. (2021). Meta-information in conversational search. ACM Trans. Inf. Syst., 39(4), 1–44. Association for Computing Machinery (ACM).
  • Kiesel, J., Reichenbach, N., Stein, B., & Potthast, M. (2021). Image Retrieval for Arguments Using Stance-Aware Query Expansion. In Proceedings of the 8th Workshop on Argument Mining. Association for Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/2021.argmining-1.4
  • Klapproth, C., Sen, R., Stadler, P. F., Findeiß, S., & Fallmann, J. (2021). Common features in lncRNA annotation and classification: A survey. Noncoding RNA, 7(4), 77. MDPI AG.
  • Klimpke, J., & Rudolph, S. (2021). Visualization of statistical information in concept lattice diagrams. In Formal Concept Analysis, Lecture notes in computer science (pp. 208–223). Cham: Springer International Publishing.
  • Kneuer, M., Corsten, M., Schammann, H., Kahle, P., Wallaschek, S., & Ziegler, F. (2021). Claiming solidarity: A multilevel discursive reconstruction of solidarity. European Journal of Social Theory, 25, 136843102110457.
  • Knutzen, F., Averbeck, P., Barrasso, C., Bouwer, L. M., Gardiner, B., Grünzweig, J. M., Hänel, S., et al. (2023). Impacts and damages of the European multi-year drought and heat event 2018–2022 on forests, a review.
  • Kodali, P., Schoeder, C. T., Schmitz, S., Crowe, J., & Meiler, J. (2021). RosettaCM for antibodies with very long HCDR3s and low template availability. Proteins, 89(11), 1458–1472. Wiley.
  • Koehler Leman, J., Lyskov, S., Lewis, S. M., Adolf-Bryfogle, J., Alford, R. F., Barlow, K., Ben-Aharon, Z., et al. (2021). Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks. Nat. Commun., 12(1), 6947. Springer Science and Business Media LLC.
  • Koehler, T. (2021). TAI @ HE. Approaches of Artificial Intelligence in Higher Education.
  • Körner, E., Hakimi, A. D., Heyer, G., & Potthast, M. (2021). Casting the Same Sentiment Classification Problem. In Findings of the Association for Computational Linguistics: EMNLP 2021. Association for Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/2021.findings-emnlp.53
  • Körner, E., Wiedemann, G., Hakimi, A. D., Heyer, G., & Potthast, M. (2021). On Classifying whether Two Texts are on the Same Side of an Argument. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 10130–10138). Association for Computational Linguistics. Retrieved from http://dx.doi.org/10.18653/v1/2021.emnlp-main.795
  • Kohler, T. (2021). Didactic modeling of a digital instrument for the perception, construction and evaluation of ethical perspectives in AI systems. In 2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI). Niigata, Japan: IEEE.
  • Kolyada, N., Potthast, M., & Stein, B. (2021). Beyond Metadata: What Paper Authors Say About Corpora They Use. In Findings.
  • Koschtial, C., Koehler, T., & Felden, C. (Eds.). (2021). E-science. Progress in IS, Progress in IS (1st ed.). Cham, Switzerland: Springer Nature.
  • Krajsic, P., & Franczyk, B. (2021). Attention-based anomaly detection in hospital process event data. In 2021 8th International Conference on Soft Computing & Machine Intelligence (ISCMI). Cario, Egypt: IEEE.
  • Krajsic, P., & Franczyk, B. (2021). Semi-Supervised Anomaly Detection in Business Process Event Data using Self-Attention based Classification. Procedia Comput. Sci., 192, 39–48. Elsevier BV.
  • Krajsic, P., & Franczyk, B. (2021). Variational autoencoder for anomaly detection in event data in online process mining. In Proceedings of the 23rd International Conference on Enterprise Information Systems. Online Streaming, --- Select a Country ---: SCITEPRESS - Science and Technology Publications.
  • Kresoja, K.-P., Rommel, K.-P., Wachter, R., Henger, S., Besler, C., Klöting, N., Schnelle, M., et al. (2021). Proteomics to improve phenotyping in obese patients with heart failure with preserved ejection fraction. Eur. J. Heart Fail., 23(10), 1633–1644. Wiley.
  • Kreutz, F., Gerhards, P., Vogginger, B., Knobloch, K., & Mayr, C. G. (2021). Applied spiking neural networks for radar-based gesture recognition. In 2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP). Krakow, Poland: IEEE.
  • Kumaraswamy, M., Chowdhury, A., Gocht, A., Zapletal, J., Diethelm, K., Riha, L., Sawley, M.-C., et al. (2021). Saving Energy Using the READEX Methodology. In Tools for High Performance Computing 2018/2019: Proceedings of the 12th and of the 13th International Workshop on Parallel Tools for High Performance Computing, Stuttgart, Germany, September 2018, and Dresden, Germany, September 2019 (pp. 27–53). Springer.
  • Kuntz, C. P., Woods, H., McKee, A. G., Zelt, N. B., Mendenhall, J. L., Meiler, J., & Schlebach, J. P. (2021). Towards Generalizable Predictions for the Effects of Mutations on G-Protein Coupled Receptor Expression. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2021.12.28.474371
  • Kuznetsov, S. O., Napoli, A., & Rudolph, S. (Eds.). (2021). Proceedings of the 9th International Workshop "What can FCA do for Artificial Intelligence?" co-located with the 30th International Joint Conference on Artificial Intelligence (IJCAI 2021), Montréal, Québec, Canada, August 21, 2021. CEUR Workshop Proceedings, CEUR Workshop Proceedings (Vol. 2972). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-2972
  • Langner, R., Satkowski, M., Büschel, W., & Dachselt, R. (2021). MARVIS: Combining mobile devices and augmented reality for visual data analysis. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Yokohama Japan: ACM.
  • Lerm, S., Saeedi, A., & Rahm, E. (2021). Extended Affinity Propagation clustering for Multi-source entity resolution. In . Gesellschaft für Informatik, Bonn.
  • Levet, F., Carpenter, A. E., Eliceiri, K. W., Kreshuk, A., Bankhead, P., & Haase, R. (2021). Developing open-source software for bioimage analysis: opportunities and challenges. F1000Research, 10. Faculty of 1000 Ltd.
  • Li, B., Mendenhall, J., Capra, J. A., & Meiler, J. (2021). A Multitask Deep-Learning Method for Predicting Membrane Associations and Secondary Structures of Proteins. Journal of Proteome Research, 20(8), 4089–4100. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.1021/acs.jproteome.1c00410
  • Lin, Y.-C., Hoffmann, P., & Rahm, E. (2021). Enhancing cross-lingual semantic annotations using deep network sentence embeddings. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies. Online Streaming, --- Select a Country ---: SCITEPRESS - Science and Technology Publications.
  • Linke, D. (2021). „From sainted to tainted data’’ -- Rechte Dritter an KI-Trainingsdaten. In Intelligente Systeme -- Intelligentes Recht (pp. 179–198). Nomos Verlagsgesellschaft mbH & Co. KG.
  • Linke, D. (2021). „Künstliche Intelligenz`` und Urheberrecht - Quo vadis?. Nomos Verlagsgesellschaft mbH & Co. KG.
  • Loeffler, C. M. L., Gaisa, N. T., Muti, H. S., van Treeck, M., Echle, A., Ghaffari Laleh, N., Trautwein, C., et al. (2021). Predicting mutational status of driver and suppressor genes directly from histopathology with Deep Learning: A systematic study across 23 solid tumor types. Front. Genet., 12, 806386.
  • Lokamani, Kelling, J., Ohmann, R., Meyer, J., Kühne, T., Cuniberti, G., Wolf, J., et al. (2021). Describing chain-like assembly of ethoxygroup-functionalized organic molecules on Au(111) using high-throughput simulations. Scientific reports, 11(1). Nature Publishing Group.
  • Lokamani, M., Kelling, J., Ohmann, R., Meyer, J., Kühne, T., Cuniberti, G., Wolf, J., et al. (2021). A combined experimental and theoretical study of 1,4-bis(phenylethynyl)-2,5-bis(ethoxy)benzene adsorption on Au(111). Surf. Sci., 712(121877), 121877. Elsevier BV.
  • Luo, W., Goebel, E., Reipschläger, P., Ellenberg, M. O., & Dachselt, R. (2021). Demonstrating Spatial Exploration and Slicing of Volumetric Medical Data in Augmented Reality with Handheld Devices.
  • Luo, W., Lehmann, A., Yang, Y., & Dachselt, R. (2021). Investigating document layout and placement strategies for collaborative sensemaking in augmented reality. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. Yokohama Japan: ACM.
  • Maciak, M. s, Okhrin, O., & Pev sta, M. (2021). Infinitely stochastic micro reserving. Insur. Math. Econ., 100, 30–58. Elsevier BV.
  • Maddu, S., Cheeseman, B. L., Müller, C. L., & Sbalzarini, I. F. (2021). Learning physically consistent differential equation models from data using group sparsity. Physical Review E, 103(4). American Physical Society, College Park.
  • Maddu, S., Sturm, D., Cheeseman, B. L., Müller, C. L., & Sbalzarini, I. F. (2021). Learning computable models from data. In (pp. 1–6).
  • Maddu, S., Sturm, D., Cheeseman, B. L., Müller, C. L., & Sbalzarini, I. F. (2021). STENCIL-NET: Data-driven solution-adaptive discretization of partial differential equations.
  • Maiello, L., Ball, L., Micali, M., Iannuzzi, F., Scherf, N., Hoffmann, R.-T., Gama de Abreu, M., et al. (2021). Automatic lung segmentation and quantification of aeration in computed tomography of the chest using 3D transfer learning. Front. Physiol., 12, 725865.
  • Maiwald, F., Lehmann, C., & Lazariv, T. (2021). Fully automated pose estimation of historical images in the context of 4d geographic information systems utilizing machine learning methods. ISPRS International Journal of Geo-Information, 10(11), 748. Multidisciplinary Digital Publishing Institute.
  • Maktabi, M., Tkachenko, M., Kohler, H., Schierle, K., Gockel, I., Jansen-Winkeln, B., & Chalopin, C. (2021). Using physiological parameters measured by hyperspectral imaging to detect colorectal cancer. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Mexico: IEEE.
  • Maletti, A., Nasz, T., Stier, K., & Ulbricht, M. (2021). Ambiguity hierarchies for weighted tree automata. In Implementation and Application of Automata, Lecture notes in computer science (pp. 140–151). Cham: Springer International Publishing.
  • Martins, G. G., Cordelières, F. P., Colombelli, J., D’antuono, R., Golani, O., Guiet, R., Haase, R., et al. (2021). Highlights from the 2016-2020 NEUBIAS training schools for Bioimage Analysts: a success story and key asset for analysts and life scientists. F1000Research, 10. Faculty of 1000 Ltd.
  • Marx, E., Hamann, A., Baberowski, D., Nenner, C., Kazimiers, A., Leonhardt, T., & Bergner, N. (2021). EduInf - Education in Informatics. Gesellschaft für Informatik, Bonn. Retrieved from http://dl.gi.de/handle/20.500.12116/37646
  • Mendenhall, J., Brown, B. P., Kothiwale, S., & Meiler, J. (2021). BCL::Conf: Improved open-source knowledge-based conformation sampling using the Crystallography Open Database. J. Chem. Inf. Model., 61(1), 189–201. American Chemical Society (ACS).
  • Mihindukulasooriya, N., Dubey, M., Gliozzo, A., Lehmann, J., Ngomo, A.-C. N., & Usbeck, R. (2021). SeMantic AnsweR Type prediction task (SMART) at ISWC 2020 Semantic Web Challenge. arXiv.
  • Mosig, C., Bush, R., Pelsser, C., Schmidt, T. C., & Wählisch, M. (2021). Revisiting Recommended BGP Route Flap Damping Configurations, 5, 22.
  • Münster, S., Lehmann, C., Lazariv, T., Maiwald, F., & Karsten, S. (2021). Toward an Automated Pipeline for a Browser-Based, City-Scale Mobile 4D VR Application Based on Historical Images. In F. Niebling, S. Münster, & H. Messemer (Eds.), Research and Education in Urban History in the Age of Digital Libraries (pp. 106–128). Cham: Springer International Publishing.
  • Muhandes, L., Chapsa, M., Pippel, M., Behrendt, R., Ge, Y., Dahl, A., Yi, B., et al. (2021). Low threshold for cutaneous allergen sensitization but no spontaneous dermatitis or atopy in FLG-deficient mice. J. Invest. Dermatol., 141(11), 2611–2619.e2. Elsevier BV.
  • Muiños-Landin, S., Fischer, A., Holubec, V., & Cichos, F. (2021). Reinforcement learning with artificial microswimmers. Sci. Robot., 6(52). American Association for the Advancement of Science (AAAS).
  • Mukherjee, S., Cogan, J. D., Newman, J. H., Phillips, 3rd, Hamid, R., Network, U. D., Meiler, J., et al. (2021). Identifying digenic disease genes via machine learning in the Undiagnosed Diseases Network. Am. J. Hum. Genet., 108(10), 1946–1963. Elsevier BV.
  • Munro, A., Hummel, S., Brodacz-Geier, M., & Kumari, H. (2021). Teaching Comprehension: Roles, Tasks and Functions. In S. Hummel (Ed.), CONTESSA: Contemporary Teaching Skills for South-East Asia (pp. 75–91). University of Graz.
  • Murgas, K. A., Ma, Y., Shahidi, L. K., Mukherjee, S., Allen, A. S., Shibata, D., & Ryser, M. D. (2021). A Bayesian hierarchical model to estimate DNA methylation conservation in colorectal tumors. Bioinformatics, 38(1), 22–29. Retrieved from https://doi.org/10.1093/bioinformatics/btab637
  • Nardini, P., Chen, M., Bujack, R., Bottinger, M., & Scheuermann, G. (2021). A testing environment for continuous colormaps. IEEE Trans. Vis. Comput. Graph., 27(2), 1043–1053. Institute of Electrical and Electronics Engineers (IEEE).
  • Nardini, P., Chen, M., Böttinger, M., Scheuermann, G., & Bujack, R. (2021). Automatic improvement of continuous colormaps in euclidean colorspaces. Comput. Graph. Forum, 40(3), 361–373. Wiley.
  • Nardini, P., Chen, M., Samsel, F., Bujack, R., Bottinger, M., & Scheuermann, G. (2021). The making of continuous colormaps. IEEE Trans. Vis. Comput. Graph., 27(6), 3048–3063. Institute of Electrical and Electronics Engineers (IEEE).
  • Nazari, M., Kluge, A., Apostolova, I., Klutmann, S., Kimiaei, S., Schroeder, M., & Buchert, R. (2021). Explainable AI to improve acceptance of convolutional neural networks for automatic classification of dopamine transporter SPECT in the diagnosis of clinically uncertain parkinsonian syndromes. European Journal of Nuclear Medicine and Molecular Imaging, 49(4), 1176–1186. Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1007/s00259-021-05569-9
  • Nazari, M., Kluge, A., Apostolova, I., Klutmann, S., Kimiaei, S., Schroeder, M., & Buchert, R. (2021). Data-driven identification of diagnostically useful extrastriatal signal in dopamine transporter SPECT using explainable AI. Sci. Rep., 11(1), 22932. Springer Science and Business Media LLC.
  • Neumann, J., Technische Universität Dresden, C. for O. D. I., Participation (CODIP), Adelberg, B., Riedel, J., Technische Universität Dresden, C. for O. D. I., Participation (CODIP), et al. (2021). Die Bildungsbiografie in der Blockchain -- das Vorhaben MyEduLife. In Gemeinschaften in Neuen Medien. Digitale Partizipation in hybriden Realitäten und Gemeinschaften. Technische Universität Dresden.
  • Nitsche, A.-M., Burger, M., Arlinghaus, J., Schumann, C.-A., & Franczyk, B. (2021). Smarter relationships? The present and future scope of AI application in buyer-supplier relationships. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 237–251). Cham: Springer International Publishing.
  • Nitsche, A.-M., Schumann, C.-A., Franczyk, B., & Reuther, K. (2021). Artificial intelligence inspired supply chain collaboration: A design-science research and system dynamics approach. In 2021 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). Cardiff, United Kingdom: IEEE.
  • Nitsche, A.-M., Schumann, C.-A., Franczyk, B., & Reuther, K. (2021). Mapping supply chain collaboration research: a machine learning-based literature review. International Journal of Logistics Research and Applications, 26(8), 954–982. Informa UK Limited. Retrieved from http://dx.doi.org/10.1080/13675567.2021.2001446
  • Novitasari, M. C., Quaas, J., & Rodrigues, M. (2021). Leveraging Machine Learning to Predict the Autoconversion Rates from Satellite Data. In NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning. Retrieved from https://www.climatechange.ai/papers/neurips2021/59
  • Nunn, A., Otto, C., Stadler, P. F., & Langenberger, D. (2021). Comprehensive benchmarking of software for mapping whole genome bisulfite data: from read alignment to DNA methylation analysis. Brief. Bioinform., 22(5). Oxford University Press (OUP).
  • Nunn, A., Rodr’iguez-Arévalo, I., Tandukar, Z., Frels, K., Contreras-Garrido, A., Carbonell-Bejerano, P., Zhang, P., et al. (2021). Chromosome-level Thlaspi arvense genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. bioRxiv. Cold Spring Harbor Laboratory. Retrieved from https://www.biorxiv.org/content/early/2021/08/01/2021.07.30.454478
  • Obraczka, D., & Rahm, E. (2021). An evaluation of hubness reduction methods for entity alignment with knowledge graph embeddings. In Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. Online Streaming, --- Select a Country ---: SCITEPRESS - Science and Technology Publications.
  • Obraczka, D., Schuchart, J., & Rahm, E. (2021). EAGER: Embedding-assisted entity Resolution for knowledge graphs. arXiv.
  • Obraczka, D., Schuchart, J., & Rahm, E. (2021). Embedding-Assisted Entity Resolution for Knowledge Graphs. In D. Chaves-Fraga, A. Dimou, P. Heyvaert, F. Priyatna, & J. Sequeda (Eds.), Proceedings of the 2nd International Workshop on Knowledge Graph Construction co-located with 18th Extended Semantic Web Conference (ESWC 2021), Online, June 5, 2021, CEUR Workshop Proceedings (Vol. 2873). CEUR-WS.org. Retrieved from http://ceur-ws.org/Vol-2873/paper8.pdf
  • Oliveira Monteiro, L. M., Saraiva, J., Toscan, R. B., Stadler, P. F., Silva-Rocha, R., & da Rocha, U. N. (2021, January). PredicTF: a tool to predict bacterial transcription factors in complex microbial communities. bioRxiv.
  • Olzog, V. J., Gärtner, C., Stadler, P. F., Fallmann, J., & Weinberg, C. E. (2021). cyPhyRNA-seq: a genome-scale RNA-seq method to detect active self-cleaving ribozymes by capturing RNAs with 2’,3’ cyclic phosphates and 5’ hydroxyl ends. RNA Biol., 18(sup2), 818–831. Informa UK Limited.
  • Perera, W. L., Technische Universität Dresden, C. for O. D. I., Participation (CODIP), Messemer, H., Clados, C., Heinz, M., Technische Universität Dresden, C. for O. D. I., et al. (2021). Processing history. Potentials of transformers for 3D reconstruction of historical objects with the help of artificial intelligence. In Gemeinschaften in Neuen Medien. Digitale Partizipation in hybriden Realitäten und Gemeinschaften. Technische Universität Dresden.
  • Pester, B., Winke, O., Ligges, C., Dachselt, R., & Gumhold, S. (2021). Immersive 3D Visualization of Multi-Modal Brain Connectivity. EuroVis Workshop on Visual Analytics (EuroVA). The Eurographics Association. Retrieved from https://diglib.eg.org/handle/10.2312/eurova20211091
  • Phul, S., Kuenze, G., Vanoye, C. G., Sanders, C. R., George, A. L., & Meiler, J. (2021). Predicting the Functional Impact of KCNQ1 Variants with Artificial Neural Networks. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2021.12.06.471347
  • Pietzsch, T., Duso, L., & Zechner, C. (2021). Compartor: A toolbox for the automatic generation of moment equations for dynamic compartment populations. Bioinformatics, 37(17), 2782–2784. Oxford University Press (OUP).
  • Pilato, C., Bohm, S., Brocheton, F., Castrillon, J., Cevasco, R., Cima, V., Cmar, R., et al. (2021). EVEREST: A design environment for extreme-scale big data analytics on heterogeneous platforms. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). Grenoble, France: IEEE.
  • Platow, B. (2021). Digitalisierung/Big Data/KI.
  • Platow, B. (2021). Homo, Homo digitalis, Homo deus – alte und neue Menschenbilder im Diskurs.
  • Platow, B. (2021). Zur Zukunft religioeser Bildung aus evangelischer Sicht.
  • Platow, B. (2021). Zur Zukunft digitalisierter Bildung aus evangelischer Sicht.
  • Platow, B. (2021). Über Bildung in der Zukunft: Ein Diskurs über technologisch konstituierte Bildung in theologischer Perspektive. ET-Studies, 12(2), 223–239.
  • Platow, B. (2021). Selbstwahrnehmung und Ich-Konstruktion im Angesicht von Künstlicher Intelligenz. In Digitalisierung aus theologischer und ethischer Perspektive (pp. 105–124). Nomos Verlagsgesellschaft mbH & Co. KG.
  • Porto, V. C., de Assis de Souza Filho, F., Carvalho, T. M. N., de Carvalho Studart, T. M., & Portela, M. M. (2021). A GLM copula approach for multisite annual streamflow generation. Journal of Hydrology, 598, 126226. Elsevier.
  • Potthast, M., Günther, S., Bevendorff, J., Bittner, J. P., Bondarenko, A., Fröbe, M., Kahmann, C., et al. (2021). The information retrieval anthology. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Virtual Event Canada: ACM.
  • Potthast, M., Hagen, M., & Stein, B. (2021). The dilemma of the direct answer. SIGIR Forum, 54(1). New York, NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3451964.3451978
  • Potthast, M., Stein, B., & Hagen, M. (2021). The information retrieval anthology 2021. SIGIR Forum, 55(1), 1–18. Association for Computing Machinery (ACM).
  • Potthast, M., Stein, B., & Hagen, M. (2021). The information retrieval anthology 2021: inaugural status report and challenges ahead. ACM SIGIR Forum, 55(1), 1–18. Association for Computing Machinery (ACM). Retrieved from http://dx.doi.org/10.1145/3476415.3476417
  • Prager, R. P., Vinzent Seiler, M., Trautmann, H., & Kerschke, P. (2021). Towards feature-free automated algorithm selection for single-objective continuous black-box optimization. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI). Orlando, FL, USA: IEEE.
  • Rehfeld, K., Wider, J., Theisen, N., Werner, M., Köthe, U., & Weitzel, N. (2021). The potential of machine learning for modeling spatio-temporal properties of water isotopologue distributions in precipitation. EGU General Assembly Conference Abstracts, EGU21–2979.
  • Reimer, J. H., Luu, T. K. H., Henze, M., & Ajjour, Y. (2021). Modern Talking in Key Point Analysis: Key Point Matching using Pretrained Encoders. In Proceedings of the 8th Workshop on Argument Mining. Association for Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/2021.argmining-1.18
  • Reinke, A., Tizabi, M. D., Sudre, C. H., Eisenmann, M., Rädsch, T., Baumgartner, M., Acion, L., et al. (2021). Common limitations of image processing metrics: A picture story. arXiv preprint arXiv:2104.05642.
  • Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., Uliano-Silva, M., et al. (2021). Towards complete and error-free genome assemblies of all vertebrate species. Nature, 592(7856), 737–746. Springer Science and Business Media LLC.
  • Riedel, J., & Kleppsch, J. (2021). Wie bereit sind Studierende für die Nutzung von KI-Technologien? Eine Annäherung an die KI-Readiness Studierender im Kontext des Projektes "tech4comp". Waxmann : Münster ; New York. Retrieved from https://www.pedocs.de/frontdoor.php?source_opus=26644
  • Riedel, J., Ruhland, C., Schufmann, S., & Zawidzki, J. (2021). Learning analytics dashboards - expectations of teachers and learners. In EDULEARN Proceedings. Online Conference: IATED.
  • Roche, K. E., & Mukherjee, S. (2021, December). The accuracy of absolute differential abundance analysis from relative count data. bioRxiv.
  • Rohde, F., Franke, M., Sehili, Z., Lablans, M., & Rahm, E. (2021). Optimization of the Mainzelliste software for fast privacy-preserving record linkage. J. Transl. Med., 19(1), 33. Springer Science and Business Media LLC.
  • Rost, C., Fritzsche, P., Schons, L., Zimmer, M., Gawlick, D., & Rahm, E. (2021). Bitemporal property graphs to organize evolving systems. arXiv.
  • Rost, C., Gomez, K., Fritzsche, P., Thor, A., & Rahm, E. (2021). Exploration and analysis of temporal property graphs. OpenProceedings.org.
  • Sadier, A., Anthwal, N., Krause, A. L., Dessalles, R., Lake, M., Bentolila, L., Haase, R., et al. (2021). Bat teeth illuminate the diversification of mammalian tooth classes. bioRxiv, 2021–12. Cold Spring Harbor Laboratory.
  • Saeedi, A., David, L. A., & Rahm, E. (2021). Matching Entities from Multiple Sources with Hierarchical Agglomerative Clustering. In International Conference on Knowledge Engineering and Ontology Development.
  • Saker, H., Machné, R., Fallmann, J., Murray, D. B., Shahin, A. M., & Stadler, P. F. (2021). Weighted Consensus Segmentations. Computation, 9(2), 17. MDPI AG. Retrieved from http://dx.doi.org/10.3390/computation9020017
  • Sakr, S., Bonifati, A., Voigt, H., Iosup, A., Ammar, K., Angles, R., Aref, W., et al. (2021). The future is big graphs: a community view on graph processing systems.
  • Sala, F., Ficorella, C., Vazquez, R. M., Eichholz, H. M., Käs, J. A., & Osellame, R. (2021). Rapid prototyping of 3D biochips for cell motility studies using two-photon polymerization. Frontiers in bioengineering and biotechnology, 9, 664094. Frontiers Media SA.
  • Satkowski, M., Büschel, W., & Dachselt, R. (2021). Experiences with user studies in augmented reality. arXiv.
  • Satkowski, M., & Dachselt, R. (2021). Investigating the impact of real-world environments on the perception of 2D visualizations in augmented reality. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Yokohama Japan: ACM.
  • Satkowski, M., Luo, W., & Dachselt, R. (2021). A visualization authoring model for Post-WIMP interfaces. arXiv.
  • Satkowski, M., Luo, W., & Dachselt, R. (2021). Towards in-situ authoring of AR visualizations with mobile devices. In 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). Bari, Italy: IEEE.
  • Schäpermeier, L., Grimme, C., & Kerschke, P. (2021). To boldly show what no one has seen before: A dashboard for visualizing multi-objective landscapes. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 632–644). Cham: Springer International Publishing.
  • Schaller, D., Geiß, M., Stadler, P. F., & Hellmuth, M. (2021). Complete Characterization of Incorrect Orthology Assignments in Best Match Graphs. Journal of Mathematical Biology, 82(3). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1007/s00285-021-01564-8
  • Schaller, D., Hellmuth, M., & Stadler, P. (2021, July). A Linear-Time Algorithm for the Common Refinement of Rooted Phylogenetic Trees on a Common Leaf Set.
  • Schaller, D., Hellmuth, M., & Stadler, P. F. (2021). A simpler linear-time algorithm for the common refinement of rooted phylogenetic trees on a common leaf set. Algorithms Mol. Biol., 16(1), 23. Springer Science and Business Media LLC.
  • Schaller, D., Hellmuth, M., & Stadler, P. F. (2021). Orientation of Fitch Graphs and Detection of Horizontal Gene Transfer in Gene Trees. Retrieved from https://arxiv.org/abs/2112.00403
  • Schlesinger, D., Shekhovtsov, A., & Flach, B. (2021). VAE Approximation Error: ELBO and Conditional Independence. CoRR, abs/2102.09310. Retrieved from https://arxiv.org/abs/2102.09310
  • Schmidt, M., Kircheis, W., Simons, A., Potthast, M., & Stein, B. (2021). Does Wikipedia Cover the Relevant Literature on Major Innovations Timely? An Exploratory Case Study of CRISPR/Cas9. In W. Glänzel, S. Heeffer, P.-S. Chi, & R. Rousseau (Eds.), 18th International Conference on Scientometrics & Informetrics (ISSI 2021) (pp. 1021–1026). International Society for Scientometrics and Informetrics (I.S.S.I.). Retrieved from https://issi2021.org/proceedings/
  • Schmitz, S., Ertelt, M., Merkl, R., & Meiler, J. (2021). Rosetta design with co-evolutionary information retains protein function. PLoS Comput. Biol., 17(1), e1008568. Public Library of Science (PLoS).
  • Scholz, V., Winkler, P., Hornig, A., Gude, M., & Filippatos, A. (2021). Structural damage identification of composite rotors based on fully connected neural networks and convolutional neural networks. Sensors (Basel), 21(6), 2005. MDPI AG.
  • Schröder, C., Müller, L., Niekler, A., & Potthast, M. (2021). Small-text: Active learning for text classification in Python. arXiv.
  • Schröder, C., Niekler, A., & Potthast, M. (2021). Uncertainty-based Query Strategies for Active Learning with Transformers. CoRR, abs/2107.05687. Retrieved from https://arxiv.org/abs/2107.05687
  • Schröder, C., Niekler, A., & Potthast, M. (2021). Revisiting uncertainty-based query strategies for active learning with transformers. arXiv.
  • Schunk, S. J., Kleber, M. E., März, W., Pang, S., Zewinger, S., Triem, S., Ege, P., et al. (2021). Genetically determined NLRP3 inflammasome activation associates with systemic inflammation and cardiovascular mortality. Eur. Heart J., 42(18), 1742–1756. Oxford University Press (OUP).
  • Sehili, Z., Rohde, F., Franke, M., & Rahm, E. (2021). Multi-party privacy preserving record linkage in dynamic metric space. In . Gesellschaft für Informatik, Bonn.
  • Shekhovtsov, A., Schlesinger, D., & Flach, B. (2021). VAE approximation error: ELBO and exponential families. arXiv.
  • Simons, A., Kircheis, W., Schmidt, M., Potthast, M., & Stein, B. (2021). When a social network writes science history: How Wikipedia frames innovation processes. In Framing Innovation in a Networked World. An Interdisciplinary Workshop. Retrieved from https://web.archive.org/web/20211026205345/paolorossini.com/simons-et-al/
  • Sodoge, J., Kuhlicke, C., Mahecha, M. D., & de Brito, M. M. (2024). Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany. Natural Hazards and Earth System Sciences, 24(5), 1757–1777. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/nhess-24-1757-2024
  • Somermeyer, L. G., Fleiss, A., Mishin, A. S., Bozhanova, N. G., Igolkina, A. A., Meiler, J., Pujol, M.-E. A., et al. (2021). Heterogeneity of the GFP fitness landscape and data-driven protein design. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2021.12.08.471728
  • Steinbach, P., Seibold, H., & Guhr, O. (2021). Teaching Machine Learning in 2020. In B. Bischl, O. Guhr, H. Seibold, & P. Steinbach (Eds.), Proceedings of the First Teaching Machine Learning and Artificial Intelligence Workshop, Proceedings of Machine Learning Research (Vol. 141, pp. 1–6). PMLR. Retrieved from https://proceedings.mlr.press/v141/steinbach21a.html
  • Striegl, J., Gollasch, D., Loitsch, C., & Weber, G. (2021). Designing VUIs for social assistance robots for people with dementia. In Mensch und Computer 2021. Ingolstadt Germany: ACM.
  • Su, L., & Mukherjee, S. (2021). A large deviation approach to posterior consistency in dynamical systems. arXiv.
  • Sven Hetmank, A. L.-R. (2021). Inteligencia Artificial y Propiedad Intelectual.
  • Syed, S., Khatib, K. A., Alshomary, M., Wachsmuth, H., & Potthast, M. (2021). Generating Informative Conclusions for Argumentative Texts. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Association for Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/2021.findings-acl.306
  • Syed, S., Yousef, T., Al-Khatib, K., Jänicke, S., & Potthast, M. (2021). SUMMARY EXPLORER: Visualizing the State of the Art in Text Summarization. In M.-F. Moens, X. Huang, L. Specia, & S. W.- tau Yih (Eds.), 26th Conference on Empirical Methods in Natural Language Processing (EMNLP 2021) (pp. 185–194). Association for Computational Linguistics.
  • Ulbricht, M. (2021). On the maximal number of complete extensions in abstract argumentation frameworks. In Proceedings of the Eighteenth International Conference on Principles of Knowledge Representation and Reasoning. Hanoii, Vietnam: International Joint Conferences on Artificial Intelligence Organization.
  • Ulbricht, M. (2021). On the Relationship of Modularity Notions in Abstract Argumentation.
  • Umlauft, J., Lindner, F., Roux, P., Mikesell, T. D., Haney, M. M., Korn, M., & Walter, F. T. (2021). Stick-slip tremor beneath an alpine glacier. Geophysical Research Letters, 48(2), e2020GL090528. Wiley Online Library.
  • Vakkari, P., Völske, M., Potthast, M., Hagen, M., & Stein, B. (2021). Predicting essay quality from search and writing behavior. J. Assoc. Inf. Sci. Technol., 72(7), 839–852. Wiley.
  • Vargis, T. R., & Ghiasvand, S. (2022). A Light-weight and Unsupervised Method for Near Real-time Behavioral Analysis using Operational Data Measurement. In The International Conference for High Performance Computing, Networking, Storage, and Analysis. Dallas, Texas, USA. Retrieved from https://sc22.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost131.html
  • Velez, M., Jamshidi, P., Siegmund, N., Apel, S., & Kästner, C. (2021). White-box analysis over machine learning: Modeling performance of configurable systems. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE) (pp. 1072–1084). IEEE.
  • Vietinghoff, D., Heine, C., Bottinger, M., Maher, N., Jungclaus, J., & Scheuermann, G. (2021). Visual analysis of spatio-temporal trends in time-dependent ensemble data sets on the example of the north Atlantic oscillation. In 2021 IEEE 14th Pacific Visualization Symposium (PacificVis). Tianjin, China: IEEE.
  • Vietinghoff, D., Heine, C., Bottinger, M., & Scheuermann, G. (2021). An extension of empirical orthogonal functions for the analysis of time-dependent 2D scalar field ensembles. In 2021 IEEE 14th Pacific Visualization Symposium (PacificVis). Tianjin, China: IEEE.
  • Völske, M., Bevendorff, J., Kiesel, J., Stein, B., Fröbe, M., Hagen, M., & Potthast, M. (2021). 28. September - 2. Oktober 2020. In . Gesellschaft für Informatik, Bonn.
  • Völske, M., Bevendorff, J., Kiesel, J., Stein, B., Fröbe, M., Hagen, M., & Potthast, M. (2021, July). Web Archive Analytics.
  • Voigt, K., Zhang, M., Ramakrishna, K., Amouretti, A., Appel, K., Brambrink, E., Cerantola, V., et al. (2021). Demonstration of an x-ray Raman spectroscopy setup to study warm dense carbon at the high energy density instrument of European XFEL. Phys. Plasmas, 28(8), 082701. AIP Publishing.
  • Vrandev ci’c, D., Pintscher, L., & Krötzsch, M. (2023). Wikidata: The Making Of. In Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, & G.-J. Houben (Eds.), Companion Proceedings of the ACM Web Conference 2023 (WWW’23) (pp. 615–624). United States of America: Association for Computing Machinery (ACM), New York.
  • Waschke, J., Hlawitschka, M., Anlas, K., Trivedi, V., Roeder, I., Huisken, J., & Scherf, N. (2021). linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser. PLoS Comput. Biol., 17(11), e1009503. Public Library of Science (PLoS).
  • Weber, M., Apel, S., & Siegmund, N. (2021). White-box performance-influence models: A profiling and learning approach. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE) (pp. 1059–1071). IEEE.
  • Werner, E., Manjunath, L., Frenzel, J., & Torge, S. (2021). Bridging between data science and performance analysis: Tracing of jupyter notebooks. In The First International Conference on AI-ML-Systems. Bangalore India: ACM.
  • Wiegmann, M., Kersten, J., Senaratne, H., Potthast, M., Klan, F., & Stein, B. (2021). Opportunities and risks of disaster data from social media: a systematic review of incident information. Nat. Hazards Earth Syst. Sci., 21(5), 1431–1444. Copernicus GmbH.
  • Wilke, M., & Rahm, E. (2021). Towards Multi-Modal Entity Resolution for Product Matching. In GvDB.
  • Willmann, A., Stiller, P., Debus, A., Irman, A., Pausch, R., Chang, Y.-Y., Bussmann, M., et al. (2021). Data-driven shadowgraph simulation of a 3D object. arXiv.
  • Winkler, P., Koch, N., Hornig, A., & Gerritzen, J. (2021). OmniOpt – A tool for hyperparameter optimization on HPC. In H. Jagode, H. Anzt, H. Ltaief, & P. Luszczek (Eds.), High Performance Computing - ISC High Performance Digital 2021 International Workshops, 2021, Revised Selected Papers, Lecture Notes in Computer Science, Volume 12761 (pp. 285–296). Germany: Springer, Berlin [u. a.].
  • Wittekind, D. A., Scholz, M., Kratzsch, J., Löffler, M., Horn, K., Kirsten, H., Witte, V., et al. (2021). Genome-wide association and transcriptome analysis suggests total serum ghrelin to be linked with GFRAL. Eur. J. Endocrinol., 184(6), 847–856. Bioscientifica.
  • Woltmann, L., Olwig, D., Hartmann, C., Habich, D., & Lehner, W. (2021). PostCENN. Proceedings VLDB Endowment, 14(12), 2715–2718. Association for Computing Machinery (ACM).
  • Woltmann, L., Volk, P., Dinzinger, M., Gräf, L., Strasser, S., Schildgen, J., Hartmann, C., et al. (2021). Data Science Meets High-Tech Manufacturing – The BTW 2021 Data Science Challenge. Datenbank-Spektrum, 22.
  • Wu, B., Waschneck, B., & Mayr, C. (2021). Squeeze-and-threshold based quantization for low-precision neural networks. In Proceedings of the International Neural Networks Society (pp. 232–243). Cham: Springer International Publishing.
  • Xavier, L. C. P., da Silva, S. M. O., Carvalho, T. M. N., Filho, J. D. P., & de Assis de Souza Filho, F. (2020). Use of Machine Learning in Evaluation of Drought Perception in Irrigated Agriculture: The Case of an Irrigated Perimeter in Brazil. Water, 12(6), 1546. Multidisciplinary Digital Publishing Institute.
  • Xiong, P., Hulsey, C. D., Fruciano, C., Wong, W. Y., Nater, A., Kautt, A. F., Simakov, O., et al. (2021). The comparative genomic landscape of adaptive radiation in crater lake cichlid fishes. Molecular Ecology, 30(4), 955–972. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.15774
  • Yan, Y., Stewart, T. C., Choo, X., Vogginger, B., Partzsch, J., Höppner, S., Kelber, F., et al. (2021). Comparing Loihi with a SpiNNaker 2 prototype on low-latency keyword spotting and adaptive robotic control. Neuromorph. Comput. Eng., 1(1), 014002. IOP Publishing.
  • Yang, C., Zhou, Y., Marcus, S., Formenti, G., Bergeron, L. A., Song, Z., Bi, X., et al. (2021). Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature, 594(7862), 227–233. Springer Science and Business Media LLC.
  • Zhang, Y., Ren, P., & de Rijke, M. (2021). A human-machine collaborative framework for evaluating malevolence in dialogues. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 5612–5623).
funded by:
Gefördert vom Bundesministerium für Bildung und Forschung.
Gefördert vom Freistaat Sachsen.