JavaScript is required to use this site. Please enable JavaScript in your browser settings.

2022

  • Adama, S., & Bogdan, M. (2022). Application of soft-clustering to assess consciousness in a CLIS patient. Brain Sci., 13(1), 65. MDPI AG.
  • Adama, S., Wu, S.-J., Nicolaou, N., & Bogdan, M. (2022). Extendable hybrid approach to detect conscious states in a CLIS patient using machine learning. SNE Simul. Notes Eur., 32(1), 37–45. ARGESIM Arbeitsgemeinschaft Simulation News.
  • Adasme, M. F., Bolz, S. N., Al-Fatlawi, A., & Schroeder, M. (2022). Decomposing compounds enables reconstruction of interaction fingerprints for structure-based drug screening. Journal of Cheminformatics, 14(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1186/s13321-022-00592-w
  • Ajjour, Y., Braslavski, P., Bondarenko, A., & Stein, B. (2022). Identifying argumentative questions in web search logs. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid Spain: ACM.
  • Akiki, C., Gienapp, L., & Potthast, M. (2022). Tracking Discourse Influence in Darknet Forums. arXiv.
  • Akiki, C., Pistilli, G., Mieskes, M., Gallé, M., Wolf, T., Ili’c, S., & Jernite, Y. (2022). BigScience: A case study in the social construction of a multilingual large language model. arXiv.
  • Akshay, A., Abedi, M., Shekarchizadeh, N., Burkhard, F. C., Katoch, M., Bigger-Allen, A., Adam, R. M., et al. (2022). MLcps: machine learning cumulative performance score for classification problems. Gigascience, 12.
  • Akshay, A., Katoch, M., Abedi, M., Shekarchizadeh, N., Besic, M., Burkhard, F. C., Bigger-Allen, A., et al. (2022). SpheroScan: a user-friendly deep learning tool for spheroid image analysis. Gigascience, 12. Oxford University Press (OUP).
  • Al-Fatlawi, A., Afrin, N., Ozen, C., Malekian, N., & Schroeder, M. (2022). NetRank Recovers Known Cancer Hallmark Genes as Universal Biomarker Signature for Cancer Outcome Prediction. Frontiers in Bioinformatics, 2. Frontiers Media SA. Retrieved from http://dx.doi.org/10.3389/fbinf.2022.780229
  • Alam, M. M., Rony, M. R. A. H., Nayyeri, M., Mohiuddin, K., Akter, M. S. T. M., Vahdati, S., & Lehmann, J. (2022). Language Model Guided Knowledge Graph Embeddings. IEEE Access, 10, 76008–76020.
  • Alamo, D., Meiler, J., & Mchaourab, H. (2022, May). Principles of Alternating Access in LeuT-fold Transporters: Commonalities and Divergences.
  • Alb, M., Einsele, H., Loskill, P., Van der Meer, A., Sewald, K., Reiche, K., Koehl, U., et al. (2022). New Strategies to improve the Safety of CAR-T Cell Immunotherapy: the imSAVAR Project. In ONCOLOGY RESEARCH AND TREATMENT (Vol. 45, pp. 70–71). KARGER ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND.
  • Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferrandis, C. M., Muennighoff, N., et al. (2023). SantaCoder: don’t reach for the stars!. arXiv.
  • Allein, L., Cimiano, P., Habernal, I., Potthast, M., Simons, A., & Stein, B. (2022). Towards Operationalizing Frames through Axiomatization.
  • Alrabbaa, C., Baader, F., Borgwardt, S., Dachselt, R., Koopmann, P., & Méndez, J. (2022). Evonne: Interactive Proof Visualization for Description Logics (System Description). In J. Blanchette, L. Kovács, & D. Pattinson (Eds.), Automated Reasoning - 11th International Joint Conference, IJCAR 2022, Proceedings, Lecture Notes in Computer Science, Volume 13385 (pp. 271–280). Germany: Springer, Berlin [u. a.].
  • Álvarez, L. G., Rudolph, S., & Straß, H. (2022). How to Agree to Disagree: Managing Ontological Perspectives using Standpoint Logic. In U. Sattler, A. Hogan, M. Keet, V. Presutti, J. P. A. Almeida, H. Takeda, P. Monnin, et al. (Eds.), Proceedings of the 21st International Semantic Web Conference (ISWC 22), Lecture Notes in Computer Science (Vol. 13489). Springer.
  • Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlucke, B., & Ihrke, I. (Eds.). (2022). Pattern Recognition. Lecture notes in computer science, Lecture notes in computer science (1st ed.). Cham, Switzerland: Springer International Publishing.
  • Andres, B., Di Gregorio, S., Irmai, J., & Lange, J.-H. (2022). A polyhedral study of lifted multicuts. Discrete Optimization, 47, 100757. arXiv.
  • Anil Chaudhari, A., Srinivasan, K. K., Rama Chilukuri, B., Treiber, M., & Okhrin, O. (2022). Calibrating model parameters to trajectory data of mixed vehicular traffic. Transp. Res. Rec., 2676(1), 718–735. SAGE Publications.
  • Arguello, A. S., & Stadler, P. F. (2022). Whitney’s connectivity inequalities for directed hypergraphs. The Art of Discrete and Applied Mathematics, 5(1), P1–01.
  • Arya, S., Curry, J., & Mukherjee, S. (2022). A sheaf-theoretic construction of shape space. arXiv.
  • Arzt, M., Deschamps, J., Schmied, C., Pietzsch, T., Schmidt, D., Tomancak, P., Haase, R., et al. (2022). LABKIT: labeling and segmentation toolkit for big image data. Frontiers in computer science, 4, 777728. Frontiers.
  • Aspar, P., Steinhoff, V., Schäpermeier, L., Kerschke, P., Trautmann, H., & Grimme, C. (2022). The objective that freed me: a multi-objective local search approach for continuous single-objective optimization. Nat. Comput.. Springer Science and Business Media LLC.
  • Ayala, D., Hernández, I., Ruiz, D., & Rahm, E. (2022). Multi-source dataset of e-commerce products with attributes for property matching. Data Brief, 41(107884), 107884. Elsevier BV.
  • Ayala, D., Hernández, I., Ruiz, D., & Rahm, E. (2022). LEAPME: Learning-based property matching with embeddings. Data Knowl. Eng., 137(101943), 101943. Elsevier BV.
  • Baader, F., & Fernández Gil, O. (2022). Restricted Unification in the Description Logic $mathcalFL_bot$. In D. M. Cerna & B. Morawska (Eds.), Proceedings of the 36th International Workshop on Unification (UNIF 2022). Haifa, Israel.
  • Baader, F., & Kapur, D. (2022). Deciding the word problem for ground and strongly shallow identities w.R.T. Extensional symbols. J. Automat. Reason., 66(3), 301–329. Springer Science and Business Media LLC.
  • Baader, F., Koopmann, P., Kriegel, F., & Nuradiansyah, A. (2022). Optimal ABox Repair w.r.t. Static ℰℒ TBoxes: from Quantified ABoxes back to ABoxes (Extended Version) ( No. 22-01). Dresden, Germany: Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden.
  • Baader, F., Koopmann, P., Kriegel, F., & Nuradiansyah, A. (2022). Optimal ABox Repair w.r.t. Static ℰℒ TBoxes: from Quantified ABoxes back to ABoxes (Extended Abstract). In Proceedings of the 35th International Workshop on Description Logics (DL 2022), Haifa, Israel, August 7--10, 2022, CEUR Workshop Proceedings (Vol. 3263). CEUR-WS.org.
  • Baader, F., Koopmann, P., Kriegel, F., & Nuradiansyah, A. (2022). Optimal ABox Repair w.r.t. Static ℰℒ TBoxes: from Quantified ABoxes back to ABoxes. In Proceedings of the 19th Extended Semantic Web Conference, ESWC 2022, Hersonissos, Greece, May 29 -- June 2, 2022, Lecture Notes in Computer Science (Vol. 13261, pp. 130–146). Springer.
  • Baader, F., Koopmann, P., Michel, F., Turhan, A.-Y., & Zarriess, B. (2022). Efficient TBox Reasoning with Value Restrictions Using the ℱℒower Reasoner. In O. Arieli, M. Homola, J. Jung, & M.-L. Mugnier (Eds.), DL 2022 - Proceedings of the 35th International Workshop on Description Logics, co-located with Federated Logic Conference, FLoC 2022, CEUR Workshop Proceedings (Vol. 3263). CEUR-WS.
  • Baader, F., & Kriegel, F. (2022). Pushing Optimal ABox Repair from ℰℒ Towards More Expressive Horn-DLs. In Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel, July 31 -- August 5, 2022 (pp. 22–32).
  • Baader, F., Kriegel, F., & Nuradiansyah, A. (2022). Error-Tolerant Reasoning in the Description Logic ℰℒ Based On Optimal Repairs. In Proceedings of the 6th International Joint Conference on Rules and Reasoning, RuleML+RR 2022, Virtual, September 26--28, 2022, Lecture Notes in Computer Science (Vol. 13752, pp. 227–243). Springer.
  • Baader, F., & Rydval, J. (2022). Using model theory to find decidable and tractable description logics with concrete domains. J. Automat. Reason., 66(3), 357–407. Springer Science and Business Media LLC.
  • Baumann, R., & Berthold, M. (2022). Limits and Possibilities of Forgetting in Abstract Argumentation. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-2022 (pp. 2539–2545). International Joint Conferences on Artificial Intelligence Organization. Retrieved from http://dx.doi.org/10.24963/ijcai.2022/352
  • Baumann, R., Brewka, G., & Ulbricht, M. (2022). Shedding new light on the foundations of abstract argumentation: Modularization and weak admissibility. Artif. Intell., 310(103742), 103742. Elsevier BV.
  • Baumann, R., & Penndorf, C. H. (2022). Lattice Theoretical Analysis of Dung-style AFs-Information and Reachability Order. In FCR@ KI (pp. 53–65).
  • Baumann, R., Rapberger, A., & Ulbricht, M. (2022). Equivalence in argumentation frameworks with a claim-centric view--classical results with novel ingredients. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, pp. 5479–5486).
  • Baumann, R., & Strass, H. (2022). An abstract, logical approach to characterizing strong equivalence in non-monotonic knowledge representation formalisms. Artif. Intell., 305(103680), 103680. Elsevier BV.
  • Behme, A., & Sideris, A. (2022). Markov-modulated generalized Ornstein-Uhlenbeck processes and an application in risk theory. Bernoulli (Andover.), 28(2). Bernoulli Society for Mathematical Statistics and Probability.
  • Beltran-Velandia, F., Gomez, J., Suarez, M., Ojeda, A., & Leon, E. (2022). Classification of Music-Evoked Emotions from EEG signals using Self-Organizing Maps. In 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). Prague, Czech Republic: IEEE.
  • Berthold, M. (2022). On syntactic forgetting with strong persistence. In Proceedings of the Nineteenth International Conference on Principles of Knowledge Representation and Reasoning. Haifa, Israel: International Joint Conferences on Artificial Intelligence Organization.
  • Beutner, R., Carral, D., Finkbeiner, B., Hofmann, J., & Krötzsch, M. (2022). Deciding Hyperproperties Combined with Functional Specifications. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22 (pp. 1–13). Haifa, Israel: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3531130.3533369
  • Bevendorff, J., Chulvi, B., Fersini, E., Heini, A., Kestemont, M., Kredens, K., Mayerl, M., et al. (2022). Overview of PAN 2022: Authorship Verification, Profiling Irony and Stereotype Spreaders, and Style Change Detection. In (pp. 382–394).
  • Bevendorff, J., Sauer, P., Gienapp, L., Kircheis, W., Körner, E., Stein, B., & Potthast, M. (2022). SMAuC -- the scientific multi-authorship corpus. arXiv.
  • Bevendorff, J., Wiegmann, M., Potthast, M., & Stein, B. (2022). The Impact of Online Affiliate Marketing on Web Search. In A. Wagner, C. Guetl, M. Granitzer, & S. Voigt (Eds.), 4th International Symposium on Open Search Technology (OSSYM 2022). International Open Search Symposium.
  • Beyer, K., Straten, V., Remmers, S., MacLennan, S., MacLennan, S., Gandaglia, G., Willemse, P.-P. M., et al. (2022). Secondary Treatment for Men with Localized Prostate Cancer: A Pooled Analysis of PRIAS and ERSPC-Rotterdam Data within the PIONEER Data Platform. Journal of Personalized Medicine, 12(5), 751. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jpm12050751
  • Beylier, C., Scherf, N., Doeller, C. F., & Menghi, N. (2022). Representation in machine learning: A neuro-cognitive approach. In French-German Research and Innovation Network for AI workshop.
  • Beylier, C., Scherf, N., Doeller, C. F., & Menghi, N. (2022). From manifolds to thoughts. In 11th IMPRS NeuroCom Summer School.
  • Björk, J. R., Dasari, M. R., Roche, K., Grieneisen, L., Gould, T. J., Grenier, J.-C., Yotova, V., et al. (2022). Synchrony and idiosyncrasy in the gut microbiome of wild baboons. Nat. Ecol. Evol., 6(7), 955–964. Springer Science and Business Media LLC.
  • Blee, A. M., Li, B., Pecen, T., Meiler, J., Nagel, Z. D., Capra, J. A., & Chazin, W. J. (2022). An Active Learning Framework Improves Tumor Variant Interpretation. Cancer Research, 82(15), 2704–2715. American Association for Cancer Research (AACR). Retrieved from http://dx.doi.org/10.1158/0008-5472.CAN-21-3798
  • Blümel, L., & Ulbricht, M. (2022). Defining defense and defeat in abstract argumentation from scratch -- A generalizing approach. In Proceedings of the Nineteenth International Conference on Principles of Knowledge Representation and Reasoning. Haifa, Israel: International Joint Conferences on Artificial Intelligence Organization.
  • Bogdan, M. (2022). Learning algorithms for spiking neural networks: should one use learning algorithms from ANN/DL or neurological plausible learning? - A thought-provoking impulse. In XLIII Jornadas de Automática: libro de actas: 7, 8 y 9 de septiembre de 2022, Logroño (La Rioja) (pp. 201–207). Servizo de Publicacións da UDC.
  • Bondarenko, A., Ajjour, Y., Dittmar, V., Homann, N., Braslavski, P., & Hagen, M. (2022). Towards understanding and answering comparative questions. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. Virtual Event AZ USA: ACM.
  • Bondarenko, A., Fröbe, M., Gienapp, L., Pugachev, A., Reimer, J. H., Schlatt, F., Artemova, E., et al. (2022). Webis at TREC 2022: Deep Learning and Health Misinformation.
  • Bondarenko, A., Wolska, M., Heindorf, S., Blübaum, L., Ngonga Ngomo, A.-C., Stein, B., Braslavski, P., et al. (2022). CausalQA: A Benchmark for Causal Question Answering. In Proceedings of the 29th International Conference on Computational Linguistics (pp. 3296–3308). Gyeongju, Republic of Korea: International Committee on Computational Linguistics. Retrieved from https://aclanthology.org/2022.coling-1.291
  • Bonidia, R. P., Avila Santos, A. P., de Almeida, B. L., Stadler, P. F., Nunes da Rocha, U., Sanches, D. S., & De Carvalho, A. C. (2022). Information theory for biological sequence classification: a novel feature extraction technique based on Tsallis entropy. Entropy, 24(10), 1398. MDPI.
  • Bonidia, R. P., Santos, A. P. A., de Almeida, B. L. S., Stadler, P. F., da Rocha, U. N., Sanches, D. S., & de Carvalho, A. C. P. L. F. (2022). BioAutoML: automated feature engineering and metalearning to predict noncoding RNAs in bacteria. Briefings in Bioinformatics, 23(4). Oxford University Press (OUP). Retrieved from http://dx.doi.org/10.1093/bib/bbac218
  • Bozhanova, N. G., Flyak, A. I., Brown, B. P., Ruiz, S. E., Salas, J., Rho, S., Bombardi, R. G., et al. (2022). Computational identification of HCV neutralizing antibodies with a common HCDR3 disulfide bond motif in the antibody repertoires of infected individuals. Nat. Commun., 13(1), 3178. Springer Science and Business Media LLC.
  • Bran, A. M., Stadler, P. F., Jost, J., & Restrepo, G. (2022). Periodic system converges and is affected by wars.
  • Brandmeier, M., Hell, M., Cherif, E., & Nüchter, A. (2022). Synergetic use of Sentinel-1 and Sentinel-2 data for large-scale Land Use/Land Cover Mapping. EGU General Assembly Conference Abstracts, EGU22–4300.
  • Brinker, T. J., Schmitt, M., Krieghoff-Henning, E. I., Barnhill, R., Beltraminelli, H., Braun, S. A., Carr, R., et al. (2022). Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists. J. Am. Acad. Dermatol., 86(3), 640–642. Elsevier BV.
  • Brockmoeller, S., Echle, A., Ghaffari Laleh, N., Eiholm, S., Malmstrom, M. L., Plato Kuhlmann, T., Levic, K., et al. (2022). Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer. J. Pathol., 256(3), 269–281. Wiley.
  • Bromberger, M., Dragoste, I., Faqeh, R., Fetzer, C., González, L., Krötzsch, M., Marx, M., et al. (2022). A Sorted Datalog Hammer for Supervisor Verification Conditions Modulo Simple Linear Arithmetic. In D. Fisman & G. Rosu (Eds.), Proc. of the 28th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2022), LNCS (Vol. 13243, pp. 480–501). Springer.
  • Brown, B. P., Vu, O., Geanes, A. R., Kothiwale, S., Butkiewicz, M., Lowe, J., Mueller, R., et al. (2022). Introduction to the BioChemical Library (BCL): An application-based open-source toolkit for integrated cheminformatics and machine learning in computer-aided drug discovery. Front. Pharmacol., 13, 833099. Frontiers Media SA.
  • Brown, B. P., Vu, O., Geanes, A. R., Kothiwale, S., Butkiewicz, M., Lowe, E. W., Mueller, R., et al. (2022). Introduction to the BioChemical Library (BCL): An Application-Based Open-Source Toolkit for Integrated Cheminformatics and Machine Learning in Computer-Aided Drug Discovery. Frontiers in Pharmacology, 13. Frontiers Media SA. Retrieved from http://dx.doi.org/10.3389/fphar.2022.833099
  • Bruckmann, C., Stadler, P. F., & Hellmuth, M. (2022). From modular decomposition trees to rooted median graphs. Discrete Applied Mathematics, 310, 1–9. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.dam.2021.12.017
  • Buchheim, C., Henke, D., & Irmai, J. (2022). The stochastic bilevel continuous knapsack problem with uncertain follower’s objective. J. Optim. Theory Appl.. Springer Science and Business Media LLC.
  • Buendgens, L., Cifci, D., Ghaffari Laleh, N., van Treeck, M., Koenen, M. T., Zimmermann, H. W., Herbold, T., et al. (2022). Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopy. Sci. Rep., 12(1), 4829. Springer Science and Business Media LLC.
  • Calderaro, J., Di Tommaso, L., Maillé, P., Beaufrère, A., Nguyen, C. T., Heij, L., Gnemmi, V., et al. (2022). Nestin as a diagnostic and prognostic marker for combined hepatocellular-cholangiocarcinoma. J. Hepatol., 77(6), 1586–1597. Elsevier BV.
  • Caprio, M., Aveni, A., & Mukherjee, S. (2022). Concerning Two Classes of Non-Diophantine Arithmetics. In Proceedings (Vol. 81, p. 33).
  • Caprio, M., & Mukherjee, S. (2022). Concentration inequalities and optimal number of layers for stochastic deep neural networks. arXiv.
  • Caprio, M., & Mukherjee, S. (2022). Ergodic Theorems for Dynamic Imprecise Probability Kinematics. Retrieved from https://arxiv.org/abs/2003.06502
  • Carneiro, B. L. D. S., de Assis de Souza Filho, F., Carvalho, T. M. N., & Raulino, J. B. S. (2022). Hydrological risk of dam failure under climate change. RBRH, 27, e19. Associação Brasileira de Recursos Hídricos.
  • Carvalho, T. M. N., Neto, I. E. L., & de Assis Souza Filho, F. (2022). Uncovering the influence of hydrological and climate variables in chlorophyll-A concentration in tropical reservoirs with machine learning. Environmental Science and Pollution Research, 29(49), 74967–74982. Springer Berlin Heidelberg.
  • Cherif, E., Hell, M., & Brandmeier, M. (2022). DeepForest: Novel deep learning models for land use and land cover classification using multi-temporal and-modal sentinel data of the amazon basin. Remote Sensing, 14(19), 5000. MDPI.
  • Cherif, E., Hell, M., & Brandmeier, M. (2022). DeepForest: Novel deep learning models for land use and land cover classification using multi-temporal and -modal Sentinel data of the Amazon basin. Remote Sens. (Basel), 14(19), 5000. MDPI AG.
  • Christen, V., Häntschel, T., Christen, P., & Rahm, E. (2022). Privacy-preserving record linkage using autoencoders. Int. J. Data Sci. Anal.. Springer Science and Business Media LLC.
  • Cifci, D., Foersch, S., & Kather, J. N. (2022). Artificial intelligence to identify genetic alterations in conventional histopathology. J. Pathol., 257(4), 430–444. Wiley.
  • Colin?York, H., Heddleston, J., Wait, E., Karedla, N., deSantis, M., Khuon, S., Chew, T., et al. (2022). Quantifying Molecular Dynamics within Complex Cellular Morphologies using LLSM?FRAP (Small Methods 6/2022). Small Methods, 6(6). Wiley. Retrieved from http://dx.doi.org/10.1002/smtd.202270033
  • Corona-Gomez, J. A., Coss-Navarrete, E. L., Garcia-Lopez, I. J., Klapproth, C., Pérez-Patiño, J. A., & Fernandez-Valverde, S. L. (2022). Transcriptome-guided annotation and functional classification of long non-coding RNAs in Arabidopsis thaliana. Scientific Reports, 12(1), 14063. Retrieved from https://doi.org/10.1038/s41598-022-18254-0
  • Cortés-Andrés, J., Camps-Valls, G., Sippel, S., Székely, E. o, Sejdinovic, D., Diaz, E., Pérez-Suay, A., et al. (2022). Physics-aware nonparametric regression models for Earth data analysis. Environ. Res. Lett., 17(5), 054034. IOP Publishing.
  • da Rocha, U. N., Kasmanas, J. C., Kallies, R., Saraiva, J. P., Toscan, R. B., Štefanivc, P., Bicalho, M. F., et al. (2022). MuDoGeR: Multi-domain genome recovery from metagenomes made easy. bioRxiv, 2022–06. Cold Spring Harbor Laboratory.
  • Dachselt, R., Gaggl, S. A., Krötzsch, M., Méndez, J., Rusovac, D., & Yang, M. (2022). NEXAS: A Visual Tool for Navigating and Exploring Argumentation Solution Spaces. In F. Toni, S. Polberg, R. Booth, M. Caminada, & H. Kido (Eds.), Proceedings of the 9th International Conference on Computational Models of Argument (COMMA 2022), FAIA (Vol. 220146, pp. 116–127). Netherlands: IOS Press, Amsterdam [u. a.].
  • Dachselt, R., Gaggl, S., Krötzsch, M., Méndez, J., Rusovac, D., & Yang, M. (2022). NEXAS: A Visual Tool for Navigating and Exploring Argumentation Solution Spaces. Computational Models of Argument: Proceedings of COMMA 2022, 353, 116. IOS Press.
  • De Camargo e Souza Câmara, I., & Turhan, A.-Y. (2022). Rational Defeasible Subsumption in DLs with Nested Quantifiers: the Case of ELI⊥.
  • Deckers, N., Fröbe, M., Kiesel, J., Pandolfo, G., Schröder, C., Stein, B., & Potthast, M. (2022). The infinite index: Information retrieval on generative text-to-image models. arXiv.
  • Deckers, N., & Potthast, M. (2022). WARC-DL: Scalable Web Archive Processing for Deep Learning. Retrieved from https://arxiv.org/abs/2209.12299
  • del Alamo, D., DeSousa, L., Nair, R. M., Rahman, S., Meiler, J., & Mchaourab, H. S. (2022). Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter. Proceedings of the National Academy of Sciences, 119(34). Proceedings of the National Academy of Sciences. Retrieved from http://dx.doi.org/10.1073/pnas.2206129119
  • del Alamo, D., Sala, D., Mchaourab, H. S., & Meiler, J. (2022). Sampling alternative conformational states of transporters and receptors with AlphaFold2. eLife, 11. eLife Sciences Publications, Ltd. Retrieved from http://dx.doi.org/10.7554/eLife.75751
  • Diebel-Fischer, H. (2022). Zerlegt die Digitalisierung Verantwortung? : Ethische Herausforderungen sozio-technischer Systeme. Universität Rostock. Retrieved from https://books.google.de/books?id=YCsS0AEACAAJ
  • Diebel-Fischer, H. (2022). Digitalisierung im Gesundheitswesen. Anthropologische und ethische Herausforderungen der Mensch-Maschine-Interaktion. (A. Fritz, C. Mandry, I. Proft, & J. Schuster, Eds.)Ethik in der Medizin, 34(1), 129–131. Retrieved from https://doi.org/10.1007/s00481-021-00680-9
  • Diebel-Fischer, H. (2022). Ethik und technisches Handeln. Eine Verhältnisbestimmung zweier Aspekte des menschlichen Lebensvollzugs. In G. Kammasch, S. Keil, & D. Winkler (Eds.), Wege zu technischer Bildung (pp. 135–140). Deutschland: Ingenieur-Pädagogische Wissensgesellschaft.
  • Diebel-Fischer, H. (2022). Rezension zu: Alexis Fritz, Christof Mandry, Ingo Proft, Jo-sef Schuster (Hrsg) (2021) Digitalisierung im Gesundheitswesen. Anthropologische und ethische Herausforderungen der Mensch-Maschine-Interaktion: Jahrbuch für Moraltheolo-gie, Bd. 5, Herder, Freiburg i.Br.
  • Diebel-Fischer, H. (2022). Democratizing Algorithms? An Assessment of a Potentially Dangerous Endeavor.
  • Diebel-Fischer, H., & Hellmig, L. (2022). Ethische Fragen und informatische Modelle – eine symbiotische Beziehung in der informatischen Bildung. Gesellschaft für Informatik,Bonn.
  • Diebel-Fischer, H., Hellmig, L., & Tischler, M. (2022). Technik und Verantwortung im Zeitalter der Digitalisierung. Universität Rostock.
  • Diebel-Fischer, H., & Lehmann, C. (2022, June). Lost in translation? Capturing the world in data considering ethics.
  • Donnadieu, E., Luu, M., Alb, M., Anliker, B., Arcangeli, S., Bonini, C., De Angelis, B., et al. (2022). Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. Journal for ImmunoTherapy of Cancer, 10(5), e003486. BMJ. Retrieved from http://dx.doi.org/10.1136/jitc-2021-003486
  • Donner, M.-T. (2022, May). Digitalisierung von Prüfungsformaten in der Hochschullehre - Coronabedingte Veränderungen der universitären Prüfungsprozesse aus Sicht von Hochschullehrenden der Universität Graz (Master thesis). Karl-Franzens-Universität Graz.
  • Dutta, S., Russig, B., & Gumhold, S. (2022). 3D Point Set Registration based on Hierarchical Descriptors. Journal of WSCG, 30, 44–53.
  • Dvov rák, W., König, M., Ulbricht, M., & Woltran, S. (2022). Rediscovering argumentation principles utilizing Collective Attacks. arXiv.
  • Dvov rák, W., Ulbricht, M., & Woltran, S. (2022). Recursion in abstract argumentation is hard --- on the complexity of semantics based on weak admissibility. J. Artif. Intell. Res., 74, 1403–1447. AI Access Foundation.
  • Ebel, P., Gülle, K. J., Lingenfelder, C., & Vogelsang, A. (2022). ICEBOAT: An Interactive User Behavior Analysis Tool for Automotive User Interfaces. In Adjunct Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, UIST ’22 Adjunct. Bend, OR, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3526114.3558739
  • Ebert, M. P., Meindl-Beinker, N. M., Gutting, T., Maenz, M., Betge, J., Schulte, N., Zhan, T., et al. (2022). Second-line therapy with nivolumab plus ipilimumab for older patients with oesophageal squamous cell cancer (RAMONA): a multicentre, open-label phase 2 trial. Lancet Healthy Longev., 3(6), e417-e427. Elsevier BV.
  • Egger, R., & Hummel, S. (2022). Biographieforschung und Hochschulforschung. In D. Nittel, H. von Felden, & M. Mendel (Eds.), Erziehungswissenschaftliche Biographieforschung und Biographiearbeit (pp. 574–585). Deutschland: Verlag Julius Beltz GmbH.
  • Eggers, D., Höner zu Siederdissen, C., & Stadler, P. F. (2022). Accuracy of RNA Structure Prediction Depends on the Pseudoknot Grammar. In Advances in Bioinformatics and Computational Biology (pp. 20–31). Springer Nature Switzerland. Retrieved from http://dx.doi.org/10.1007/978-3-031-21175-1_3
  • Eidi, M. (2022). Topological and geometric methods with a view towards data analysis (PhD dissertation). Universität Leipzig. Retrieved from https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-788338
  • Elhalawati, A., Krötzsch, M., & Mennicke, S. (2022). An Existential Rule Framework for~Computing Why-Provenance On-Demand for~Datalog. In Rules and Reasoning (pp. 146–163). Springer International Publishing. Retrieved from https://doi.org/10.1007/978-3-031-21541-4_10
  • Ellmauthaler, S., Gaggl, S. A., Rusovac, D., & Wallner, J. P. (2022). Representing abstract dialectical frameworks with binary decision diagrams. In Logic Programming and Nonmonotonic Reasoning, Lecture notes in computer science (pp. 177–189). Cham: Springer International Publishing.
  • Ellmauthaler, S., Gaggl, S. A., Rusovac, D., & Wallner, J. P. (2022). ADF - BDD : An ADF Solver Based on Binary Decision Diagrams. In F. Toni, S. Polberg, R. Booth, M. Caminada, & H. Kido (Eds.), Proceedings of the 9th International Conference on Computational Models of Argument (COMMA 2022), FAIA (Vol. 220146, pp. 355–356). Netherlands: IOS Press, Amsterdam [u. a.].
  • Ellmauthaler, S., Krötzsch, M., & Mennicke, S. (2022). Answering queries with negation over existential rules. Proc. Conf. AAAI Artif. Intell., 36(5), 5626–5633. Association for the Advancement of Artificial Intelligence (AAAI).
  • Elstner, T., Kiesel, J., Meyer, L., Martius, M., Schmidt, S., Stein, B., & Potthast, M. (2022). Visual Web Archive Quality Assessment. In Linking Theory and Practice of Digital Libraries, Lecture notes in computer science (pp. 365–371). Cham: Springer International Publishing.
  • Elwasif, W., Bastrakov, S., Bryngelson, S. H., Bussmann, M., Chandrasekaran, S., Ciorba, F., Clark, M. A., et al. (2022). Early application experiences on a modern GPU-accelerated Arm-based HPC platform. In HPC Asia (Vol. 23).
  • Ender, A., Grafl, N., Kolberg, T., Findeiß, S., Stadler, P. F., & Mörl, M. (2022). Synthetic riboswitches for the analysis of tRNA processing by eukaryotic RNase P enzymes. RNA, 28(4), 551–567. Cold Spring Harbor Lab.
  • Ender, A., Stadler, P. F., Mörl, M., & Findeiß, S. (2022). RNA design principles for riboswitches that regulate RNase P-mediated tRNA processing. In Riboregulator Design and Analysis (pp. 179–202). Springer.
  • Engelhardt, J., Scheer, O., Stadler, P., & Prohaska, S. (2022). Evolution of DNA Methylation Across Ecdysozoa. Journal of Molecular Evolution, 90.
  • Falakh, F. M., & Rudolph, S. (2022). AGM Revision in Description Logics Under Fixed-Domain Semantics.
  • Falakh, F. M., Rudolph, S., & Sauerwald, K. (2022). Semantic Characterizations of AGM Revision for Tarskian Logics. In G. Governatori & A.-Y. Turhan (Eds.), Proceedings of the 6th International Joint Conference on Rules and Reasoning (RuleML+RR 2022), LNCS (Vol. 13752, pp. 95–110). Springer.
  • Fallmann, J., Goldmann, R., & Stadler, P. F. (2022). MONSDA: Modular Organizer of Nextflow and Snakemake Driven HTS Data Analysis. OSF Preprints.
  • Fischer, M. F. S., Crowe, J. E., & Meiler, J. (2022). Computational epitope mapping of class I fusion proteins using low complexity supervised learning methods. (D. Schneidman, Ed.)PLOS Computational Biology, 18(12), e1010230. Public Library of Science (PLoS). Retrieved from http://dx.doi.org/10.1371/journal.pcbi.1010230
  • Flegel, T., Neumann, A., Holst, A.-L., Kretzschmann, O., Loderstedt, S., Tästensen, C., Gutmann, S., et al. (2024). Machine learning algorithms predict canine structural epilepsy with high accuracy. Frontiers in Veterinary Science, 11. Retrieved from https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2024.1406107
  • Fränzl, M., & Cichos, F. (2022). Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nature communications, 13(1), 656. Nature Publishing Group UK London.
  • Franczyk, B., Zwanzger, M., Heyer, G., Krajsic, P., Käßner, M., Gass, L., Ebenthal, L., et al. (2022). ELISA-Intelligent consumer protection system to enforce tenancy rights (Intelligentes Verbrauchschutzsystem zur Durchsetzung von Mietrechten): Schlussbericht, Stand September 2022: Projektlaufzeit: 01.01. 2020-30.06. 2022. Universität Leipzig.
  • Frey, J., Götz, F., Hofer, M., & Hellmann, S. (2022). Managing and Compiling Data Dependencies for Semantic Applications Using Databus Client. In (pp. 114–125).
  • Fritzsch, C., Hoffmann, J., & Bogdan, M. (2022). Reduction of bitstream size for low-cost iCE40 FPGAs. In 2022 32nd International Conference on Field-Programmable Logic and Applications (FPL). Belfast, United Kingdom: IEEE.
  • Fritzsch, C., Hoffmann, J., & Bogdan, M. (2022). Evolving hardware by direct bitstream manipulation of a modern FPGA. In 2022 IEEE Congress on Evolutionary Computation (CEC). Padua, Italy: IEEE.
  • Fröbe, M., Akiki, C., Potthast, M., & Hagen, M. (2022). How train-test leakage affects zero-shot retrieval. arXiv.
  • Fröbe, M., Akiki, C., Potthast, M., & Hagen, M. (2022). Noise-reduction for automatically transferred relevance judgments. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 48–61). Cham: Springer International Publishing.
  • Fröbe, M., Günther, S., Probst, M., Potthast, M., & Hagen, M. (2022). The Power of Anchor Text in the Neural Retrieval Era. In (pp. 567–583).
  • Fröbe, M., Günther, S., Probst, M., Potthast, M., & Hagen, M. (2022). Webis-MS-MARCO-Anchor-Texts-22. Zenodo.
  • Funk, M., Jung, J. C., & Lutz, C. (2022). Frontiers and exact learning of ELI queries under DL-Lite ontologies. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. Vienna, Austria: International Joint Conferences on Artificial Intelligence Organization.
  • Gaggl, S. A., Hanisch, P., & Krötzsch, M. (2022). Simulating sets in answer set programming. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. Vienna, Austria: International Joint Conferences on Artificial Intelligence Organization.
  • Gatter, T., & Stadler, P. F. (2022). Kosteneffektive hybride Genomassemblierung mit LazyB. BIOspektrum, 28(3), 283–286. Springer.
  • Gerritzen, J., Hornig, A., Gröger, B., & Gude, M. (2022). A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters. Journal of Composites Science, 6(10), 318. MDPI.
  • Ghaffari Laleh, N., Loeffler, C. M. L., Grajek, J., Stav nková, K. rina, Pearson, A. T., Muti, H. S., Trautwein, C., et al. (2022). Classical mathematical models for prediction of response to chemotherapy and immunotherapy. PLoS Comput. Biol., 18(2), e1009822. Public Library of Science (PLoS).
  • Ghaffari Laleh, N., Muti, H. S., Loeffler, C. M. L., Echle, A., Saldanha, O. L., Mahmood, F., Lu, M. Y., et al. (2022). Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal., 79(102474), 102474. Elsevier BV.
  • Gienapp, L., Fröbe, M., Hagen, M., & Potthast, M. (2022). Sparse pairwise re-ranking with pre-trained transformers. arXiv.
  • Girstmair, J., Moon, H., Brillard, C., Haase, R., & Tomancak, P. (2022). Time to upgrade: A new OpenSPIM guide to build and operate advanced OpenSPIM configurations. Advanced biology, 6(4), 2101182.
  • Gómez Álvarez, L., Rudolph, S., & Strass, H. (2022). Modelling Multiple Perspectives by Standpoint-Enhanced DLs (Extended Abstract). In O. Arieli, M. Homola, J. C. Jung, & M.-L. Mugnier (Eds.), Proceedings of the 35th International Workshop on Description Logics (DL 2022) co-located with Federated Logic Conference (FLoC 2022), Haifa, Israel, August 7th to 10th, 2022, CEUR Workshop Proceedings (Vol. 3263). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-3263/abstract-10.pdf
  • Gonzalez Somermeyer, L., Fleiss, A., Mishin, A. S., Bozhanova, N. G., Igolkina, A. A., Meiler, J., Alaball Pujol, M.-E., et al. (2022). Heterogeneity of the GFP fitness landscape and data-driven protein design. eLife, 11. eLife Sciences Publications, Ltd. Retrieved from http://dx.doi.org/10.7554/eLife.75842
  • González, L., Ivliev, A., Krötzsch, M., & Mennicke, S. (2022). Efficient Dependency Analysis for Rule-Based Ontologies. In U. Sattler, A. Hogan, M. Keet, V. Presutti, J. P. A. Almeida, H. Takeda, P. Monnin, et al. (Eds.), The Semantic Web – ISWC 2022, Lecture Notes in Computer Science, Volume 13489 (pp. 267–283). Germany: Springer, Berlin [u. a.].
  • Gornik, S. G., Flores, V., Reinhardt, F., Erber, L., Salas-Leiva, D. E., Douvropoulou, O., Lassadi, I., et al. (2022). Mitochondrial genomes in Perkinsus decode conserved frameshifts in all genes. Molecular biology and evolution, 39(10), msac191. Oxford University Press US.
  • Gospodnetic, P., Gillmann, C., & Scheuermann, G. (2022). Special Issue on Visualization in Manufacturing. IEEE Computer Graphics and Applications, 42(2), 8–9.
  • Grimmer, M., Kaelble, T., Nirsberger, F., Schulze, E., Rucks, T., Hoffmann, J., & Rahm, E. (2022). Dataset Report: LID-DS 2021. In International Conference on Critical Information Infrastructures Security (pp. 63–73). Springer.
  • Groß, D., Klauck, M., Gros, T. P., Steinmetz, M., Hoffmann, J., & Gumhold, S. (2022). Glyph-Based Visual Analysis of Q-Leaning Based Action Policy Ensembles on Racetrack. In E. Banissi, A. Ursyn, M. W. M. Bannatyne, J. M. Pires, N. Datia, K. Nazemi, B. Kovalerchuk, et al. (Eds.), 26th International Conference Information Visualisation, IV 2022, Vienna, Austria, July 19-22, 2022 (pp. 1–10). IEEE. Retrieved from https://doi.org/10.1109/IV56949.2022.00011
  • Gruber, B. M., Amadio, G., Blomer, J., Matthes, A., Widera, R., & Bussmann, M. (2022). LLAMA: The low‐level abstraction for memory access. Software: Practice and Experience, 53(1), 115–141. Wiley. Retrieved from http://dx.doi.org/10.1002/spe.3077
  • Guedan, S., Luu, M., Ammar, D., Barbao, P., Bonini, C., Bousso, P., Buchholz, C. J., et al. (2022). Time 2EVOLVE: predicting efficacy of engineered T-cells – how far is the bench from the bedside?. Journal for ImmunoTherapy of Cancer, 10(5), e003487. BMJ. Retrieved from http://dx.doi.org/10.1136/jitc-2021-003487
  • Gulsevin, A., Glazer, A. M., Shields, T., Kroncke, B. M., Roden, D. M., & Meiler, J. (2022). Veratridine can bind to a site at the mouth of the channel pore at human cardiac sodium channel NaV1.5. Int. J. Mol. Sci., 23(4), 2225. MDPI AG.
  • Gulsevin, A., Han, B., Porta, J. C., Mchaourab, H. S., Meiler, J., & Kenworthy, A. K. (2022). Template-free prediction of a new monotopic membrane protein fold and oligomeric assembly by Alphafold2. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2022.07.12.499809
  • Gulsevin, A., & Meiler, J. (2022). Benchmarking Peptide Structure Prediction with AlphaFold2. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2022.02.17.480937
  • Gupta, A., Günther, U., Incardona, P., Reina, G., Frey, S., Gumhold, S., & Sbalzarini, I. F. (2022). Efficient Raycasting of View-Dependent Piecewise Constant Representations of Volumetric Data.
  • Gupta, A., Incardona, P., Brock, A., Reina, G., Frey, S., Gumhold, S., Günther, U., et al. (2022). Parallel compositing of Volumetric Depth Images for interactive visualization of distributed volumes at high frame rates. arXiv.
  • Gupta, A., Incardona, P., Hunt, P., Reina, G., Frey, S., Gumhold, S., Günther, U., et al. (2022, June). Content-adaptive generation and parallel compositing of volumetric depth images for responsive visualization of large volume data.
  • Gupta, A., Incardona, P., Hunt, P., Reina, G., Frey, S., Gumhold, S., Günther, U., et al. (2022). Content-adaptive generation and parallel compositing of volumetric depth images for responsive visualization of large volume data.
  • Guzman, G. E. C., Stadler, P. F., & Fujita, A. (2022). Efficient eigenvalue counts for tree-like networks. Journal of Complex Networks, 10(5), cnac040. Retrieved from https://doi.org/10.1093/comnet/cnac040
  • Haar, C., & Buchmann, E. (2022). IoT Security With INFINITE: The 3-Dimensional Internet Of Things Maturity Model. In 2022 9th International Conference on Internet of Things: Systems, Management and Security (IOTSMS) (pp. 1–8).
  • Haar, C., & Buchmann, E. (2022). IoT Security: A Basic IoT Hardware Security Framework.
  • Haase, R., Fazeli, E., Legland, D., Doube, M., Culley, S., Belevich, I., Jokitalo, E., et al. (2022). A hitchhiker’s guide through the bio-image analysis software universe. Febs Letters, 596(19), 2472–2485.
  • Hänel, T., Kumar, N., Schlesinger, D., Li, M., Ünal, E., Eslami, A., & Gumhold, S. (2022). Enhancing Fairness of Visual Attribute Predictors. In Proceedings of the Asian Conference on Computer Vision (ACCV) (pp. 1211–1227).
  • Hagen, M., Fröbe, M., Jurk, A., & Potthast, M. (2022). Clickbait spoiling via question answering and passage retrieval. arXiv.
  • Hartmann, T., Bannach, M., Middendorf, M., Stadler, P. F., Wieseke, N., & Hellmuth, M. (2022). Complete edge-colored permutation graphs. Advances in Applied Mathematics, 139, 102377. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.aam.2022.102377
  • Hauser, K., Kurz, A., Haggenmüller, S., Maron, R. C., von Kalle, C., Utikal, J. S., Meier, F., et al. (2022). Explainable artificial intelligence in skin cancer recognition: A systematic review. Eur. J. Cancer, 167, 54–69. Elsevier BV.
  • Heins, J., Rook, J., Schäpermeier, L., Kerschke, P., Bossek, J., & Trautmann, H. (2022). BBE: Basin-based evaluation of multimodal multi-objective optimization problems. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 192–206). Cham: Springer International Publishing.
  • Heinz, C. N., Echle, A., Foersch, S., Bychkov, A., & Kather, J. N. (2022). The future of artificial intelligence in digital pathology - results of a survey across stakeholder groups. Histopathology, 80(7), 1121–1127. Wiley.
  • Hellmuth, M., Schaller, D., & Stadler, P. F. (2022). Compatibility of partitions with trees, hierarchies and split systems. Discrete Applied Mathematics, 314, 265–283. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.dam.2022.03.014
  • Herzog, C., & Diebel-Fischer, H. (2022). Teaching ethics through the back door? Employing ideas from assemblage theory to foster a responsible innovation mindset. In Towards a new future in engineering education, new scenarios that european alliances of tech universities open up. Barcelona: Universitat Politècnica de Catalunya.
  • Hoffmann, J., Fritzsch, C., & Bogdan, M. (2022). CoBEA. In Proceedings of the Genetic and Evolutionary Computation Conference Companion. Boston Massachusetts: ACM.
  • Hofmann, S. M., Beyer, F., Lapuschkin, S., Goltermann, O., Loeffler, M., M√ºller, K.-R., Villringer, A., et al. (2022). Towards the interpretability of deep learning models for multi-modal neuroimaging: Finding structural changes of the ageing brain. NeuroImage, 261, 119504. Retrieved from https://www.sciencedirect.com/science/article/pii/S1053811922006206
  • Hohlbein, J., Diederich, B., Marsikova, B., Reynaud, E. G., Holden, S., Jahr, W., Haase, R., et al. (2022). Open microscopy in the life sciences: quo vadis?. Nature methods, 19(9), 1020–1025. Nature Publishing Group US New York.
  • Ionescu, B., Müller, H., Druagulinescu, A. M., Idrissi-Yaghir, A., Radzhabov, A., Herrera, A. G. S. de, Andrei, A., et al. (2024). Advancing Multimedia Retrieval in Medical, Social Media and Content Recommendation Applications with ImageCLEF 2024. In N. Goharian, N. Tonellotto, Y. He, A. Lipani, G. McDonald, C. Macdonald, & I. Ounis (Eds.), Advances in Information Retrieval (pp. 44–52). Cham: Springer Nature Switzerland.
  • Iporre-Rivas, A., Scheuermann, G., & Gillmann, C. (2022). Understanding Graph Convolutional Networks to detect Brain Lesions from Stroke. The Eurographics Association. Retrieved from https://diglib.eg.org/handle/10.2312/vcbm20221195
  • Jäkel, R., Peukert, E., & et. al. (2022, May). Schlussbericht der Anwendungspartner zum Verbundvorhaben: ScaDS – Competence Center for Scalable Data Services and Solutions Dresden/Leipzig -- Phase 2.
  • Jain, S. B., Zongru, S., Veettil, S. K. T., & Hecht, M. (2022). Adversarial attacks for machine learning denoisers and how to resisit them. In G. Volpe, J. B. Pereira, D. Brunner, & A. Ozcan (Eds.), Emerging Topics in Artificial Intelligence (ETAI) 2022 (Vol. 12204, p. 1220402). SPIE.
  • Joharinad, P., & Jost, J. (2022). Geometry of Data. Retrieved from https://arxiv.org/abs/2203.07208
  • Jonsson, J., Cheeseman, B. L., Maddu, S., Gonciarz, K., & Sbalzarini, I. F. (2022). Parallel Discrete Convolutions on Adaptive Particle Representations of Images. IEEE Transactions on Image Processing, 31, 4197–4212. Wiley-IEEE Press.
  • Jordan, R. (2022). Nothing personal? Der Personenbezug von Daten in der DSGVO im Licht von künstlicher Intelligenz und Big Data. In Künstliche Intelligenz, Demokratie und Privatheit (pp. 59–76). Nomos Verlagsgesellschaft mbH & Co. KG. Retrieved from https://doi.org/10.5771/9783748913344-59
  • Jung, J. C., Lutz, C., & Marcinkowski, J. (2022). Conservative extensions for existential rules. arXiv.
  • Jurenaite, N., León-Periñán, D., Donath, V., Torge, S., & Jäkel, R. (2022). SetQuence & SetOmic: Deep Set Transformer-based Representations of Cancer Multi-Omics. In 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) (pp. 1–9).
  • Jurenaite, N., Leon-Perinan, D., Donath, V., Torge, S., & Jakel, R. (2022). SetQuence & SetOmic: Deep Set Transformer-based Representations of Cancer Multi-Omics. In 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2022, 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2022 (pp. 139–147). United States of America: IEEE, New York [u. a.].
  • Jurkschat, L., Wiedemann, G., Heinrich, M., Ruckdeschel, M., & Torge, S. (2022). Few-Shot Learning for Argument Aspects of the Nuclear Energy Debate. In N. Calzolari, F. Bechet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, et al. (Eds.), 2022 Language Resources and Evaluation Conference, LREC 2022, Language Resources and Evaluation Conference (LREC) (pp. 663–672). European Language Resources Association (ELRA).
  • Kalms, L., Häring, T., & Goehringer, D. (2022). DECISION: Distributing OpenVX Applications on CPUs, GPUs and FPGAs using OpenCL. In (pp. 84–91).
  • Kammoun, A., Slama, R., Tabia, H., Ouni, T., & Abid, M. (2022). Generative Adversarial Networks for face generation: A survey. ACM Comput. Surv.. Association for Computing Machinery (ACM).
  • Karge, J., & Rudolph, S. (2022). The More the Worst-Case-Merrier: A Generalized Condorcet Jury Theorem for Belief Fusion. In Proceedings of the Nineteenth International Conference on Principles of Knowledge Representation and Reasoning, KR-2022 (pp. 205–214). International Joint Conferences on Artificial Intelligence Organization. Retrieved from http://dx.doi.org/10.24963/kr.2022/21
  • Kather, J. N., Ghaffari Laleh, N., Foersch, S., & Truhn, D. (2022). Medical domain knowledge in domain-agnostic generative AI. NPJ Digit. Med., 5(1), 90. Springer Science and Business Media LLC.
  • Kattenborn, T., Richter, R., Guimar~aes-Steinicke, C., Feilhauer, H., & Wirth, C. (2022). AngleCam : Predicting the temporal variation of leaf angle distributions from image series with deep learning. Methods Ecol. Evol., 13(11), 2531–2545. Wiley.
  • Kattenborn, T., Schiefer, F., Frey, J., Feilhauer, H., Mahecha, M. D., & Dormann, C. F. (2022). Spatially autocorrelated training and validation samples inflate performance assessment of convolutional neural networks. ISPRS Open Journal of Photogrammetry and Remote Sensing, 5(100018), 100018. Elsevier BV.
  • Kers, J., Bülow, R. D., Klinkhammer, B. M., Breimer, G. E., Fontana, F., Abiola, A. A., Hofstraat, R., et al. (2022). Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study. Lancet Digit. Health, 4(1), e18-e26. Elsevier BV.
  • Kestemont, M., Manjavacas, E., Markov, I., Bevendorff, J., Wiegmann, M., Stamatatos, E., Stein, B., et al. (2021). Overview of the cross-domain authorship verification task at PAN 2021. In G. Faggioli, N. Ferro, A. Joly, M. Maistro, & F. Piroi (Eds.), CLEF-WN 2021 - Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings (Vol. 2936, pp. 1743–1759). CEUR-WS.
  • Kheifetz, Y., Kirsten, H., & Scholz, M. (2022). On the Parametrization of Epidemiologic Models—Lessons from Modelling COVID-19 Epidemic. Viruses, 14(7). Retrieved from https://www.mdpi.com/1999-4915/14/7/1468
  • Khouzami, N., Michel, F., Incardona, P., Castrillon, J., & Sbalzarini, I. F. (2022). Model-based autotuning of discretization methods in numerical simulations of partial differential equations. Journal of Computational Science, 57, 101489. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.jocs.2021.101489
  • Kiakou, D., Adamopoulos, A., & Scherf, N. (2022). Graph-Based Disease Prediction in Neuroimaging: Investigating the Impact of Feature Selection. In Worldwide Congress on “Genetics, Geriatrics and Neurodegenerative Diseases Research" (pp. 223–230). Springer.
  • Kirsten, T., Meineke, F., Löffler-Wirth, H., Uciteli, A., Beger, C., Stäubert, S., Löbe, M., et al. (2022). The Leipzig Health Atlas - An open platform to present, archive and share bio-medical data, analyses and models online. Methods of Information in Medicine, 61.
  • Kneuer, M., & Wallaschek, S. (2022). Framing COVID-19: Public Leadership and Crisis Communication By Chancellor Angela Merkel During the Pandemic in 2020. German Politics, 32, 1–24.
  • Knutzen, F., Averbeck, P., Barrasso, C., Bouwer, L. M., Gardiner, B., Grünzweig, J. M., Hänel, S., et al. (2023). Impacts and damages of the European multi-year drought and heat event 2018–2022 on forests, a review.
  • König, M., Rapberger, A., & Ulbricht, M. (2022). Just a Matter of Perspective. In Computational Models of Argument, Frontiers in artificial intelligence and applications. IOS Press.
  • Krajsic, P. (2022). Artificial Intelligence in Process Mining.
  • Krajsic, P., & Franczyk, B. (2022). Catch Me If You Can: Online Classification for Near Real-Time Anomaly Detection in Business Process Event Streams. Procedia Computer Science, 207, 235–244. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.procs.2022.09.056
  • Krieg, L., Didt, K., Karkossa, I., Bernhart, S. H., Kehr, S., Subramanian, N., Lindhorst, A., et al. (2022). Multiomics reveal unique signatures of human epiploic adipose tissue related to systemic insulin resistance. Gut, 71(11), 2179–2193. BMJ Publishing Group.
  • Kühnapfel, A., Ahnert, P., Horn, K., Kirsten, H., Loeffler, M., & Scholz, M. (2022). First genome-wide association study of 99 body measures derived from 3-dimensional body scans. Genes & Diseases, 9(3), 777–788. Elsevier.
  • Kuntz, C. P., Woods, H., McKee, A. G., Zelt, N. B., Mendenhall, J. L., Meiler, J., & Schlebach, J. P. (2022). Towards generalizable predictions for G protein-coupled receptor variant expression. Biophysical Journal, 121(14), 2712–2720. Retrieved from https://www.sciencedirect.com/science/article/pii/S0006349522004775
  • Kurz, A., Hauser, K., Mehrtens, H. A., Krieghoff-Henning, E., Hekler, A., Kather, J. N., Fröhling, S., et al. (2022). Uncertainty estimation in medical image classification: Systematic review. JMIR Med. Inform., 10(8), e36427.
  • Laleh, N., Ligero, M., Perez-Lopez, R., & Kather, J. (2022). Facts and Hopes on the Use of Artificial Intelligence for Predictive Immunotherapy Biomarkers in Cancer. Clinical Cancer Research, 29.
  • Lange, M., Feilhauer, H., Kühn, I., & Doktor, D. (2022). Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series. Remote Sens. Environ., 277(112888), 112888. Elsevier BV.
  • Lauber-Roensberg, A. (2022). Befugnisse des Sacheigentümers: Recht am Bild und Recht am Datum der eigenen Sache?.
  • Laurenccon, H., Saulnier, L., Wang, T., Akiki, C., Moral, A. V., Scao, T. L., & others. (2022). The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems 35 (NeurIPS 2022) (Vol. 35, pp. 31809–31826). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2022/file/ce9e92e3de2372a4b93353eb7f3dc0bd-Paper-Datasets_and_Benchmarks.pdf
  • Le, H. T., Middendorf, M., & Shi, Y. (2022). An Improvement Heuristic Based on Variable Neighborhood Search for Dynamic Orienteering Problems with Changing Node Values and Changing Budgets. SN Computer Science, 3(4), 326. Retrieved from https://doi.org/10.1007/s42979-022-01205-x
  • Leal, W., Llanos, E. J., Bernal, A., Stadler, P. F., Jost, J., & Restrepo, G. (2022). The expansion of chemical space in 1826 and in the 1840s prompted the convergence to the periodic system. Proceedings of the National Academy of Sciences, 119(30), e2119083119. National Acad Sciences.
  • Lehner, W., Sattler, K.-U., & Freytag, J.-C. (2022). BTW2021 erstmals als digitale Vortragsreihe. Datenbank-Spektrum, 22(1), 67–71. Retrieved from https://doi.org/10.1007/s13222-021-00402-x
  • Lehr, F., Dietmann, H., Krisam, C., & Volkamer, M. (2022). Manipulative Designs von Cookies. Datenschutz und Datensicherheit - DuD, 46(5), 296–300. Retrieved from https://doi.org/10.1007/s11623-022-1606-7
  • Leinhauser, M., Widera, R., Bastrakov, S., Debus, A., Bussmann, M., & Chandrasekaran, S. (2022). Metrics and design of an instruction roofline model for AMD GPUs. ACM Trans. Parallel Comput., 9(1), 1–14. Association for Computing Machinery (ACM).
  • Levinkov, E., Kardoost, A., Andres, B., & Keuper, M. (2022). Higher-order multicuts for geometric model fitting and motion segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 45(1), 608–622. Institute of Electrical and Electronics Engineers (IEEE).
  • Lin, Y.-C., Hoffmann, P., & Rahm, E. (2022). Enhancing cross-lingual biomedical concept normalization using deep neural network pretrained language models. SN Comput. Sci., 3(5). Springer Science and Business Media LLC.
  • Llanos Ballestas, E., Leal, W., Bernal, A., Jost, J., & Stadler, P. F. (2022). Are the chemical families still there? exploration of similarity among elements. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.26434/chemrxiv-2022-7b6hv
  • Loeffler, C. M. L., Ortiz Bruechle, N., Jung, M., Seillier, L., Rose, M., Laleh, N. G., Knuechel, R., et al. (2022). Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: A possible preselection for molecular testing?. Eur. Urol. Focus, 8(2), 472–479. Elsevier BV.
  • Loeffler-Wirth, H., Kreuz, M., Schmidt, M., Ott, G., Siebert, R., & Binder, H. (2022). Classifying Germinal Center Derived Lymphomas—Navigate a Complex Transcriptional Landscape. Cancers, 14(14), 3434. MDPI AG. Retrieved from http://dx.doi.org/10.3390/cancers14143434
  • Loeffler-Wirth, H., Rade, M., Arakelyan, A., Kreuz, M., Loeffler, M., Koehl, U., Reiche, K., et al. (2022). Transcriptional states of CAR-T infusion relate to neurotoxicity – lessons from high-resolution single-cell SOM expression portraying. Frontiers in Immunology, 13. Retrieved from https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.994885
  • Lutz, C., & Przybylko, M. (2022). Efficiently enumerating answers to ontology-mediated queries. arXiv.
  • Lutz, C., & Sabellek, L. (2022). A complete classification of the complexity and rewritability of ontology-mediated queries based on the description logic EL. Artif. Intell., 308(103709), 103709. Elsevier BV.
  • Lyon, T. S., & Álvarez, L. G. (2022). Automating reasoning with standpoint logic via nested sequents. arXiv.
  • Macias, R. I. R., Cardinale, V., Kendall, T. J., Avila, M. A., Guido, M., Coulouarn, C., Braconi, C., et al. (2022). Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut, gutjnl–2022. BMJ. Retrieved from https://doi.org/10.1136/gutjnl-2022-327099
  • Maddu, S., Cheeseman, B. L., Sbalzarini, I. F., & Müller, C. L. (2022). Stability selection enables robust learning of differential equations from limited noisy data. Proceedings of the Royal Society of London : Series A, Mathematical, physical and engineering sciences, 478(2262). Royal Society Publishing.
  • Maddu, S., Sturm, D., Mueller, C. L., & Sbalzarini, I. F. (2022). Inverse Dirichlet weighting enables reliable training of physics informed neural networks. Machine learning: science and technology, 3(1). IOP Publishing Ltd.
  • Maddu, S., Vagne, Q., & Sbalzarini, I. F. (2022). Learning deterministic hydrodynamic equations from stochastic active particle dynamics.
  • Maiello, L., Ball, L., Micali, M., Iannuzzi, F., Scherf, N., Hoffmann, R.-T., Gama de Abreu, M., et al. (2022). Automatic Lung Segmentation and Quantification of Aeration in Computed Tomography of the Chest Using 3D Transfer Learning. Frontiers in Physiology, 12. Frontiers Media SA. Retrieved from http://dx.doi.org/10.3389/fphys.2021.725865
  • Malekian, N., Agrawal, A. A., Berendonk, T. U., Al-Fatlawi, A., & Schroeder, M. (2022). A genome-wide scan of wastewater E. coli for genes under positive selection: focusing on mechanisms of antibiotic resistance. Scientific Reports, 12(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1038/s41598-022-11432-0
  • Marcolongo, A., Vladymyrov, M., Lienert, S., Peleg, N., Haug, S., & Zscheischler, J. (2022). Predicting years with extremely low gross primary production from daily weather data using Convolutional Neural Networks. Environmental Data Science, 1, e2.
  • Markomanolis, G., Alpay, A., Young, J., Klemm, M., Malaya, N., Esposito, A., Heikonen, J., et al. (2022). Evaluating GPU Programming Models for the LUMI Supercomputer. In (pp. 79–101).
  • Maron, R. C., Hekler, A., Haggenmüller, S., von Kalle, C., Utikal, J. S., Müller, V., Gaiser, M., et al. (2022). Model soups improve performance of dermoscopic skin cancer classifiers. Eur. J. Cancer, 173, 307–316. Elsevier BV.
  • Martinez-Vega, B., Tkachenko, M., Matkabi, M., Ortega, S., Fabelo, H., Balea-Fernandez, F., Salvia, M. L., et al. (2022). Evaluation of Preprocessing Methods on Independent Medical Hyperspectral Databases to Improve Analysis. Sensors, 22(22), 8917.
  • Martinuzzi, F., Rackauckas, C., Abdelrehim, A., Mahecha, M. D., & Mora, K. (2022). ReservoirComputing.Jl: An efficient and modular library for reservoir computing models. arXiv.
  • Martinuzzi, F., Rackauckas, C., Abdelrehim, A., Mahecha, M. D., & Mora, K. (2022). ReservoirComputing. jl: An efficient and modular library for reservoir computing models. Journal of Machine Learning Research, 23(288), 1–8.
  • Marx, E., Leonhardt, T., Baberowski, D., & Bergner, N. (2022). Using Matchboxes to Teach the Basics of Machine Learning: an Analysis of (Possible) Misconceptions. In Proceedings of the Second Teaching Machine Learning and Artificial Intelligence Workshop (pp. 25–29). PMLR.
  • Marx, E., Leonhardt, T., & Bergner, N. (2022). Brief Summary of Existing Research on Studentstextquoteright Conceptions of AI. In (pp. 1–2).
  • Marx, E., Leonhardt, T., & Bergner, N. (2022). Brief summary of existing research on students’ conceptions of AI. In Proceedings of the 17th Workshop in Primary and Secondary Computing Education. Morschach Switzerland: ACM.
  • Marx, M., & Krötzsch, M. (2022). Tuple-Generating Dependencies Capture Complex Values. In D. Olteanu & N. Vortmeier (Eds.), Proceedings of the 25th International Conference on Database Theory (ICDT 2022), 25th International Conference on Database Theory (ICDT 2022) ; Vol. 220 (Vol. 220, pp. 13:1–13:20). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
  • McDonald, E. F., Woods, H., Smith, S. T., Kim, M., Schoeder, C. T., Plate, L., & Meiler, J. (2022). Structural comparative modeling of multi-domain F508del CFTR. Biomolecules, 12(3), 471. MDPI AG.
  • McGoff, K., Mukherjee, S., & Nobel, A. B. (2022). Gibbs posterior convergence and the thermodynamic formalism. Ann. Appl. Probab., 32(1). Institute of Mathematical Statistics.
  • Meinecke, C., Schebera, J., Eschrich, J., & Wiegreffe, D. (2022). Visualizing Similarities between American Rap-Artists based on Text Reuse. In LEVIA’22 : Leipzig Symposium on Visualization in Applications 2022. Leipzig: Leipzig University.
  • Meinel, G., Sikder, S. K., & Krueger, T. (2022). IOER Monitor: A Spatio-Temporal Research Data Infrastructure on Settlement and Open Space Development in Germany. Jahrbücher für Nationalökonomie und Statistik, 242(1), 159–170. Retrieved from https://doi.org/10.1515/jbnst-2021-0009
  • Mihindukulasooriya, N., Dubey, M., Gliozzo, A., Lehmann, J., Ngomo, A.-C. N., & Usbeck, R. (2021). SeMantic AnsweR Type prediction task (SMART) at ISWC 2020 Semantic Web Challenge. arXiv.
  • Möller, C., Lehmann, J., & Usbeck, R. (2022). Survey on English Entity Linking on Wikidata: Datasets and approaches. (J. Bosque-Gil, M. Dojchinovski, P. Cimiano, J. Bosque-Gil, P. Cimiano, & M. Dojchinovski, Eds.)Semantic Web, 13(6), 925–966. SAGE Publications. Retrieved from http://dx.doi.org/10.3233/SW-212865
  • Monteiro, L. M., Saraiva, J., Toscan, R., Stadler, P., Silva-Rocha, R., & Nunes da Rocha, U. (2022). PredicTF: prediction of bacterial transcription factors in complex microbial communities using deep learning. Environmental Microbiome, 17.
  • Mordhorst, L., Morozova, M., Papazoglou, S., Fricke, B., Oeschger, J. M., Tabarin, T., Rusch, H., et al. (2022). Towards a representative reference for MRI-based human axon radius assessment using light microscopy. Neuroimage, 249, 118906. Elsevier.
  • Müller, S., Flamm, C., & Stadler, P. F. (2022). What makes a reaction network “chemical”?. Journal of Cheminformatics, 14(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1186/s13321-022-00621-8
  • Mukherjee, S., Cassini, T. A., Hu, N., Yang, T., Li, B., Shen, W., Moth, C. W., et al. (2022). Personalized structural biology reveals the molecular mechanisms underlying heterogeneous epileptic phenotypes caused by de novo KCNC2 variants. Human Genetics and Genomics Advances, 3(4), 100131. Retrieved from https://www.sciencedirect.com/science/article/pii/S2666247722000471
  • Muschalski, L., Wollmann, J., Hornig, A., & Modler, N. (2022). Steuerung von Compliant-Mechanismen durch Reinforcement Learning. GETRIEBETAGUNG 2022, 121.
  • Nam, D., Chapiro, J., Paradis, V., Seraphin, T. P., & Kather, J. N. (2022). Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep., 4(4), 100443. Elsevier BV.
  • Nata’ala, M. K., Avila Santos, A. P., Coelho Kasmanas, J., Bartholomäus, A., Saraiva, J. P., Godinho Silva, S., Keller-Costa, T., et al. (2022). MarineMetagenomeDB: a public repository for curated and standardized metadata for marine metagenomes. Environ. Microbiome, 17(1), 57. Springer Science and Business Media LLC.
  • Nayyeri, M., Vahdati, S., Khan, M. T., Alam, M. M., Wenige, L., Behrend, A., & Lehmann, J. (2022). Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion. In P. Groth, M.-E. Vidal, F. Suchanek, P. Szekley, P. Kapanipathi, C. Pesquita, H. Skaf-Molli, et al. (Eds.), The Semantic Web (pp. 253–269). Cham: Springer International Publishing.
  • Nebe, M., Kehr, S., Schmitz, S., Breitfeld, J., Lorenz, J., Le Duc, D., Stadler, P., et al. (2022). Small integral membrane protein 10 like 1 enhances differentiation of adipose progenitor cells. Biochemical and Biophysical Research Communications, 604.
  • Nikolov, S., Tranchida, J., Ramakrishna, K., Lokamani, M., Cangi, A., & Wood, M. A. (2022). Dissociating the phononic, magnetic and electronic contributions to thermal conductivity: a computational study in alpha-iron. J. Mater. Sci., 57(23), 10535–10548. Springer Science and Business Media LLC.
  • Nixon, M., Letourneau, J., David, L., Mukherjee, S., & Silverman, J. (2022, January). A Statistical Analysis of Compositional Surveys.
  • Nixon, M. P., Letourneau, J., David, L. A., Lazar, N. A., Mukherjee, S., & Silverman, J. D. (2022). Scale Reliant Inference. arXiv.
  • Noble, R., Burri, D., Le Sueur, C., Lemant, J., Viossat, Y., Kather, J. N., & Beerenwinkel, N. (2022). Spatial structure governs the mode of tumour evolution. Nat. Ecol. Evol., 6(2), 207–217. Springer Science and Business Media LLC.
  • Nunn, A., Otto, C., Fasold, M., Stadler, P. F., & Langenberger, D. (2022). Manipulating base quality scores enables variant calling from bisulfite sequencing alignments using conventional bayesian approaches. BMC Genomics, 23(1), 477. Retrieved from https://doi.org/10.1186/s12864-022-08691-6
  • N’Dow, J., Smith, E., Polychronopoulos, K., Cannon, A., Roobol, M., Auweter, S., Thomas, M., et al. (2022). 917P OPTIMA: Improve care for patients with prostate, breast, and lung cancer through artificial intelligence. Annals of Oncology, 33, S966. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.annonc.2022.07.1042
  • Obraczka, D., & Rahm, E. (2022). Fast hubness-reduced nearest neighbor search for entity alignment in Knowledge Graphs. SN Comput. Sci., 3(6). Springer Science and Business Media LLC.
  • Okhrin, O., Rockinger, M., & Schmid, M. (2022). Simulating the Cox--Ingersoll--Ross and Heston Processes: Matching the First Four Moments. Journal of Computational Finance, 26(2).
  • Ostropolski-Nalewaja, P., Marcinkowski, J., Carral, D., & Rudolph, S. (2022). A Journey to the Frontiers of Query Rewritability. In L. Libkin & P. Barceló (Eds.), Proceedings of the 41st Symposium on Principles of Database Systems (PODS’22) (pp. 359–367). ACM.
  • Oyshi, M. T., Maleska, V., Schanze, J., Bormann, F., Dachselt, R., & Gumhold, S. (2022). FloodVis: Visualization of Climate Ensemble Flood Projections in Virtual Reality. In EnvirVis@ EuroVis (pp. 1–9).
  • Oyshi, M. T., Russig, B., Dachselt, R., & Gumhold, S. (2022). VRCellLabeler (VCL): Immersive labeling of Platynereis embryo’s cell lineage trees in Virtual Reality. In Eurographics Workshop on Visual Computing for Biology and Medicine.
  • Peñaloza, R., & Turhan, A.-Y. (2022). User-aware Explications of Ontology Consequences: Levelling Technicality.
  • Pennitz, P., Kirsten, H., Friedrich, V. D., Wyler, E., Goekeri, C., Obermayer, B., Heinz, G. A., et al. (2022). A pulmonologist’s guide to perform and analyse cross-species single lung cell transcriptomics. European Respiratory Review, 31(165), 220056. European Respiratory Society (ERS). Retrieved from http://dx.doi.org/10.1183/16000617.0056-2022
  • Pester, B., Russig, B., Winke, O., Ligges, C., Dachselt, R., & Gumhold, S. (2022). Understanding multi-modal brain network data: An immersive 3D visualization approach. Comput. Graph., 106(C), 88–97. USA: Pergamon Press, Inc. Retrieved from https://doi.org/10.1016/j.cag.2022.05.024
  • Phul, S., Kuenze, G., Vanoye, C. G., Sanders, C. R., George, J., & Meiler, J. (2022). Predicting the functional impact of KCNQ1 variants with artificial neural networks. PLoS Comput. Biol., 18(4), e1010038. Public Library of Science (PLoS).
  • Phul, S., Kuenze, G., Vanoye, C. G., Sanders, C. R., George, A. L., & Meiler, J. (2022). Predicting the functional impact of KCNQ1 variants with artificial neural networks. (J. Slusky, Ed.)PLOS Computational Biology, 18(4), e1010038. Public Library of Science (PLoS). Retrieved from http://dx.doi.org/10.1371/journal.pcbi.1010038
  • Platow, B. (2022). Isten és az új istenek: Az Istenbe vetett hit technicista felváltásáról és annak működÅ‘képességérÅ‘l.
  • Platow, B. (2022). Verdrängung des Menschen?. In Zuversichtsargumente (pp. 245–264). Brill Schöningh.
  • Podranski, K., Pine, K. J., Colnaghi, T., Marek, A., Scheibe, P., Scherf, N., & Weiskopf, N. (2022). Evaluating different k-space undersampling schemes with iterative and deep learning image reconstruction for fast multi-parameter mapping.
  • Pott, J., Garcia, T., Hauck, S. M., Petrera, A., Wirkner, K., Loeffler, M., Kirsten, H., et al. (2022). Genetically regulated gene expression and proteins revealed discordant effects. PloS one, 17(5), e0268815. Public Library of Science San Francisco, CA USA.
  • Pradip, R., & Cichos, F. (2022). Deep reinforcement learning with artificial microswimmers. In Emerging Topics in Artificial Intelligence (ETAI) 2022 (Vol. 12204, pp. 104–110). SPIE.
  • Präger, A., Nsonga, B., & Scheuermann, G. (2022). Visualizing statistical complexity in 3d turbulent flows using a robust entropy calculation method. Václav Skala-UNION Agency.
  • Prager, R. P., Seiler, M. V., Trautmann, H., & Kerschke, P. (2022). Automated algorithm selection in single-objective continuous optimization: A comparative study of deep learning and landscape analysis methods. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 3–17). Cham: Springer International Publishing.
  • Rackauckas, C., Gwozdz, M., Jain, A., Ma, Y., Martinuzzi, F., Rajput, U., Saba, E., et al. (2022). Composing modeling and simulation with machine learning in Julia, 1–17. IEEE.
  • Ramakrishna, K., Cangi, A., Vorberger, J., Baczewski, A., Lokamani, M., & Team, N. (2022). Electrical Conductivity of Iron under Earth-Core Conditions from Time-Dependent Density Functional Theory. In APS March Meeting Abstracts (Vol. 2022, pp. B24–005).
  • Rapberger, A., & Ulbricht, M. (2022). On Dynamics in Structured Argumentation Formalisms. In Proceedings of the Nineteenth International Conference on Principles of Knowledge Representation and Reasoning. Haifa, Israel: International Joint Conferences on Artificial Intelligence Organization.
  • Rapberger, A., Ulbricht, M., & Wallner, J. P. (2022). Argumentation Frameworks Induced by Assumption-Based Argumentation: Relating Size and Complexity. In Proceedings of the 20th International Workshop on Non-Monotonic Reasoning, NMR 2022, Part of the Federated Logic Conference (FLoC 2022), Haifa, Israel, August 7-9, 2022 (pp. 92–103). Retrieved from https://ceur-ws.org/Vol-3197/paper9.pdf
  • Reimer, J. H., Huck, J., & Bondarenko, A. (2022). Grimjack at Touché 2022: Axiomatic Re-ranking and Query Reformulation. In G. Faggioli, N. Ferro, A. Hanbury, & M. Potthast (Eds.), Working Notes Papers of the CLEF 2022 Evaluation Labs, CEUR Workshop Proceedings (Vol. 3180). Retrieved from http://ceur-ws.org/Vol-3180/paper-260.pdf
  • Reinhardt, F., & Stadler, P. F. (2022). ExceS-A: an exon-centric split aligner. Journal of Integrative Bioinformatics, 19(1). Walter de Gruyter GmbH. Retrieved from http://dx.doi.org/10.1515/jib-2021-0040
  • Ribeiro, F. W., da Silva, S. M., de A de Souza Filho, F., Carvalho, T. M., & de M. Lopes, T. M. (2022). Diversification of urban water supply: An assessment of social costs and water production costs. Water Policy, 24(6), 980–997. IWA Publishing.
  • Roche, K. E., & Mukherjee, S. (2022). The accuracy of absolute differential abundance analysis from relative count data. PLoS Comput. Biol., 18(7), e1010284. Public Library of Science (PLoS).
  • Röhling, A., & Weil, J. (2022). Die Grenzen privater Normsetzung durch soziale Netzwerke: Zur Drittwirkung der Unionsgrundrechte bei Community Standards am Beispiel von Hate Speech. In Entscheidungsträger im Internet (pp. 151–180). Nomos Verlagsgesellschaft mbH & Co. KG.
  • Rony, M. R. A. H., Kovriguina, L., Chaudhuri, D., Usbeck, R., & Lehmann, J. (2022). RoMe: A Robust Metric for Evaluating Natural Language Generation. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 5645–5657). Dublin, Ireland: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2022.acl-long.387/
  • Rony, M. R. A. H., Usbeck, R., & Lehmann, J. (2022). DialoKG: Knowledge-Structure Aware Task-Oriented Dialogue Generation. In (pp. 2557–2571).
  • Rony, M. R. A. H., Zuo, Y., Kovriguina, L., Teucher, R., & Lehmann, J. (2022). Climate Bot: A Machine Reading Comprehension System for Climate Change Question Answering. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-2022 (pp. 5249–5252). International Joint Conferences on Artificial Intelligence Organization. Retrieved from http://dx.doi.org/10.24963/ijcai.2022/729
  • Rost, C., Gomez, K., Täschner, M., Fritzsche, P., Schons, L., Christ, L., Adameit, T., et al. (2022). Distributed temporal graph analytics with GRADOOP. VLDB J., 31(2), 375–401. Springer Science and Business Media LLC.
  • Rostami, A., Vogginger, B., Yan, Y., & Mayr, C. G. (2022). E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware. Frontiers in Neuroscience, 16. Retrieved from https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.1018006
  • Roth, J., Keller, J., Franke, S., Neumuth, T., & Schneider, D. (2022). Multi-plane UNet++ Ensemble for Glioblastoma Segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (pp. 285–294). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-031-08999-2_23
  • Sahoo, S. R. (2022). Retrieval Augmented Generative Task-oriented Dialogue Systems. Fraunhofer-Gesellschaft. Retrieved from https://publica.fraunhofer.de/handle/publica/430201
  • Sala, D., Del Alamo, D., Mchaourab, H. S., & Meiler, J. (2022). Modeling of protein conformational changes with Rosetta guided by limited experimental data. Structure, 30(8), 1157–1168.e3. Elsevier BV.
  • Saldanha, O. L., Quirke, P., West, N. P., James, J. A., Loughrey, M. B., Grabsch, H. I., Salto-Tellez, M., et al. (2022). Swarm learning for decentralized artificial intelligence in cancer histopathology. Nat. Med., 28(6), 1232–1239. Springer Science and Business Media LLC.
  • Sauer, P., Bevendorff, J., Gienapp, L., Kircheis, W., Körner, E., Stein, B., & Potthast, M. (2022, November). SMAuC -- The Scientific Multi-Authorship Corpus.
  • Scao, T., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R., et al. (2022, November). BLOOM: A 176B-Parameter Open-Access Multilingual Language Model.
  • Scao, T. L., Fan, A., Akiki, C., & others. (2022). BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. CoRR, abs/2211.05100. Retrieved from https://arxiv.org/abs/2211.05100
  • Schäpermeier, L., Grimme, C., & Kerschke, P. (2022). MOLE. In Proceedings of the Genetic and Evolutionary Computation Conference. Boston Massachusetts: ACM.
  • Schäpermeier, L., Grimme, C., & Kerschke, P. (2022). Plotting Impossible? Surveying Visualization Methods for Continuous Multi-Objective Benchmark Problems. IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, 26, 1306–1320.
  • Schaller, D., Hellmuth, M., & Stadler, P. F. (2022). AsymmeTree: A Flexible Python Package for the Simulation of Complex Gene Family Histories. Software, 1(3), 276–298. MDPI AG. Retrieved from http://dx.doi.org/10.3390/software1030013
  • Scherf, N. (2022). Einige Gedanken und Fragen zum Umgang mit und zur Veröffentlichung von Bioimaging-Datenanalysen. In 5. FDM-Workshop 2022.
  • Scherf, N. (2022). Computer statt Mensch: Kann KI unsere Probleme lösen?. Hessischer Rundfunk (hr).
  • Scherf, N. (2022). A gentle introduction to deep learning. In 11th IMPRS NeuroCom Summer School.
  • Scherf, N. (2022). Machine learning in computational microscopy. In 11th IMPRS NeuroCom Summer School.
  • Schlaeppi, A., Adams, W., Haase, R., Huisken, J., MacDonald, R. B., Eliceiri, K. W., & Kugler, E. C. (2022). Meeting in the middle: towards successful multidisciplinary bioimage analysis collaboration. Frontiers in bioinformatics, 2, 889755. Frontiers Media SA.
  • Schlatt, F., Bettin, D., Hagen, M., Stein, B., & Potthast, M. (2022). Mining Health-related Cause-Effect Statements with High Precision at Large Scale. In Proceedings of the 29th International Conference on Computational Linguistics (pp. 1925–1936). Gyeongju, Republic of Korea: International Committee on Computational Linguistics. Retrieved from https://aclanthology.org/2022.coling-1.167
  • Schmitz, R., & Kather, J. N. (2022). Artificial intelligence in Barrett’s oesophagus and the need for shared and combined data. United European Gastroenterol. J., 10(6), 525–527. Wiley.
  • Schmitz, S., Schmitz, E. A., Crowe, J., & Meiler, J. (2022). The human antibody sequence space and structural design of the V, J regions, and CDRH3 with Rosetta. MAbs, 14(1), 2068212. Informa UK Limited.
  • Schneider, L., Schäpermeier, L., Prager, R. P., Bischl, B., Trautmann, H., & Kerschke, P. (2022). HPO $times $ ELA: Investigating hyperparameter optimization landscapes by means of exploratory landscape analysis. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 575–589). Cham: Springer International Publishing.
  • Schneider, L., Krieghoff-Henning, E., Laiouar-Pedari, S., Kuntz, S., Hekler, A., Kather, J. N., Gaiser, T., et al. (2022). Response to letter entitled: Re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review. Eur. J. Cancer, 172, 403–404. Elsevier BV.
  • Schneider, L., Laiouar-Pedari, S., Kuntz, S., Krieghoff-Henning, E., Hekler, A., Kather, J. N., Gaiser, T., et al. (2022). Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review. Eur. J. Cancer, 160, 80–91. Elsevier BV.
  • Schneider, M., Gehrke, L., Christen, P., & Rahm, E. (2022). D-TOUR: Detour-based point of interest detection in privacy-sensitive trajectories. INFORMATIK 2022. Gesellschaft für Informatik, Bonn.
  • Schoeder, C. T., Gilchuk, P., Sangha, A. K., Ledwitch, K. V., Malherbe, D. C., Zhang, X., Binshtein, E., et al. (2022). Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. PLoS Pathog., 18(5), e1010518. Public Library of Science (PLoS).
  • Schor, J., Scheibe, P., Bernt, M., Busch, W., Lai, C., & Hackermüller, J. (2022). AI for predicting chemical-effect associations at the chemical universe level—deepFPlearn. Briefings in bioinformatics, 23(5), bbac257. Oxford University Press.
  • Schrammen, P. L., Ghaffari Laleh, N., Echle, A., Truhn, D., Schulz, V., Brinker, T. J., Brenner, H., et al. (2022). Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology. J. Pathol., 256(1), 50–60. Wiley.
  • Seiler, M. V., Prager, R. P., Kerschke, P., & Trautmann, H. (2022). A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness landscapes. In Proceedings of the Genetic and Evolutionary Computation Conference. Boston Massachusetts: ACM.
  • Siegmund, N., Dorn, J., Weber, M., Kaltenecker, C., & Apel, S. (2022). Green configuration: Can artificial intelligence help reduce energy consumption of configurable software systems?. Computer (Long Beach Calif.), 55(3), 74–81. Institute of Electrical and Electronics Engineers (IEEE).
  • Silverman, J. D., Roche, K., Holmes, Z. C., David, L. A., & Mukherjee, S. (2022). Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes. Journal of Machine Learning Research, 23(7), 1–42. Retrieved from http://jmlr.org/papers/v23/19-882.html
  • Smith, S. T., Shub, L., & Meiler, J. (2022). PlaceWaters: Real-time, explicit interface water sampling during Rosetta ligand docking. PLoS One, 17(5), e0269072. Public Library of Science (PLoS).
  • Soans, K. G., Ramos, A. P., Sidhaye, J., Krishna, A., Solomatina, A., Hoffmann, K. B., Schl��ler, R., et al. (2022). Collective cell migration during optic cup formation features changing cell-matrix interactions linked to matrix topology. Current Biology, 32(22), 4817–4831.e9. Retrieved from https://www.sciencedirect.com/science/article/pii/S0960982222015032
  • Sodoge, J., Kuhlicke, C., Mahecha, M. D., & de Brito, M. M. (2024). Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany. Natural Hazards and Earth System Sciences, 24(5), 1757–1777. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/nhess-24-1757-2024
  • Soltani, S., Feilhauer, H., Duker, R., & Kattenborn, T. (2022). Transfer learning from citizen science photographs enables plant species identification in UAV imagery. ISPRS Open Journal of Photogrammetry and Remote Sensing, 5, 100016-.
  • Soomro, P. N., Abduljabbar, M., Castrillon, J., & Pericàs, M. (2022). Shisha: Online scheduling of CNN pipelines on heterogeneous architectures. arXiv.
  • Sperling, L., Lämmer, S., Scheuermann, G., & Gillmann, C. (2022). Uncertainty-aware Evaluation of Machine Learning Performance in binary Classification Tasks. In .
  • Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A., Abid, A., Fisch, A., Brown, A. R., et al. (2022). Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models. arXiv.
  • Stadler, P. F., & Fallmann, J. (2022). Deutsches Netzwerk für Bioinformatik Infrastruktur, de. NBI, RNA Bioinformatics Center-Leipzig. Professur für Bioinformatik, Institut für Informatik, Universität Leipzig.
  • Stadler, P. F., & Will, S. (2022). Bi-alignments with affine gaps costs. Algorithms for Molecular Biology, 17(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1186/s13015-022-00219-7
  • Stamatatos, E., Kestemont, M., Kredens, K., Pezik, P., Heini, A., Bevendorff, J., Stein, B., et al. (2022). Overview of the Authorship Verification Task at PAN 2022.
  • Stiller, P., Makdani, V., Pöschel, F., Pausch, R., Debus, A., Bussmann, M., & Hoffmann, N. (2022). Continual learning autoencoder training for a particle-in-cell simulation via streaming. Retrieved from https://arxiv.org/abs/2211.04770
  • Strönisch, S., Meyer, M., & Lehmann, C. (2022). Flow field prediction on large variable sized 2D point clouds with graph convolution. In (pp. 1–10).
  • Subic, T., & Sbalzarini, I. F. (2022). A Gaussian jump process formulation of the reaction�diffusion master equation enables faster exact stochastic simulations. The Journal of Chemical Physics, 157(19). AIP Publishing. Retrieved from http://dx.doi.org/10.1063/5.0123073
  • Subramanian, P., Gargani, S., Palladini, A., Chatzimike, M., Grzybek, M., Peitzsch, M., Papanastasiou, A. D., et al. (2022). The RNA binding protein human antigen R is a gatekeeper of liver homeostasis. Hepatology, 75(4), 881–897.
  • Subramoney, A., Nazeer, K. K., Schöne, M., Mayr, C., & Kappel, D. (2022). Efficient recurrent architectures through activity sparsity and sparse back-propagation through time. arXiv.
  • Susik, M., Schönborn, H., & Sbalzarini, I. F. (2022). Hamiltonian Monte Carlo with strict convergence criteria reduces run-to-run variability in forensic DNA mixture deconvolution. Forensic Science International: Genetics, 60, 102744. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.fsigen.2022.102744
  • Syed, S., Schwabe, D., & Potthast, M. (2022). Summary Workbench: Unifying Application and Evaluation of Text Summarization Models. In Y. Goldberg, Z. Kozareva, & Y. Zhang (Eds.), The 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Association for Computational Linguistics.
  • Tang, W. S., da Silva, G. M., Kirveslahti, H., Skeens, E., Feng, B., Sudijono, T., Yang, K. K., et al. (2022). A topological data analytic approach for discovering biophysical signatures in protein dynamics. PLoS Comput. Biol., 18(5), e1010045. Public Library of Science (PLoS).
  • Thellmann, K.-D., Stadler, B., Usbeck, R., & Lehmann, J. (2022). Transformer with tree-order encoding for neural program generation. arXiv.
  • Thomas, B. S., You, K., Lin, L., Lim, L.-H., & Mukherjee, S. (2022). Learning Subspaces of Different Dimensions. Journal of Computational and Graphical Statistics, 31(2), 337–350. ASA Website. Retrieved from https://doi.org/10.1080/10618600.2021.2000420
  • Tirtarasa, S., & Turhan, A.-Y. (2022). A New Dimension to Generalization: Computing Temporal EL Concepts from Positive Examples (Extended Abstract). In Description Logics. Retrieved from https://api.semanticscholar.org/CorpusID:250143480
  • Torge, S., Hahn, W., Manjunath, L., & Jäkel, R. (2022). Named Entity Recognition for Specific Domains - Take Advantage of Transfer Learning. International Journal of Information Science and Technology, Vol 6 No 3 (2022). International Journal of Information Science and Technology. Retrieved from https://www.innove.org/ijist/index.php/ijist/article/view/189
  • Tran, M. H., Schoeder, C. T., Schey, K. L., & Meiler, J. (2022). Computational structure prediction for antibody-antigen complexes from hydrogen-deuterium exchange mass spectrometry: Challenges and outlook. Front. Immunol., 13, 859964. Frontiers Media SA.
  • Troya, J., Fitting, D., Brand, M., Sudarevic, B., Kather, J. N., Meining, A., & Hann, A. (2022). The influence of computer-aided polyp detection systems on reaction time for polyp detection and eye gaze. Endoscopy, 54(10), 1009–1014. Georg Thieme Verlag KG.
  • Uhrich, B., Schäfer, M., Theile, O., & Rahm, E. (2022). Using Physics-Informed Machine Learning to Optimize 3D Printing Processes. In Progress in Digital and Physical Manufacturing.
  • Ulbricht, M., & Wallner, J. P. (2022). Strongly accepting subframeworks: Connecting abstract and structured Argumentation. In Computational Models of Argument, Frontiers in artificial intelligence and applications. IOS Press.
  • Umlauft, J., Roux, P., Lecointre, A., Gimbert, F., Nanni, U., Walpersdorf, A., Rouet-LeDuc, B., et al. (2022). Mapping Glacier Basal Sliding with Beamforming and Artificial Intelligence. In EGU General Assembly Conference Abstracts (pp. EGU22–6948).
  • Urbani, J., Krötzsch, M., & Eiter, T. (2022). Chasing Streams with Existential Rules. In Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning (pp. 415–419). Retrieved from https://doi.org/10.24963/kr.2022/43
  • Vargis, T. R., & Ghiasvand, S. (2022). A Light-weight and Unsupervised Method for Near Real-time Behavioral Analysis using Operational Data Measurement. In The International Conference for High Performance Computing, Networking, Storage, and Analysis. Dallas, Texas, USA. Retrieved from https://sc22.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost131.html
  • Vargis, T. R., & Ghiasvand, S. (2022). Assessing Anonymized System Logs Usefulness for Behavioral Analysis in RNN Models. In Proceedings of the International Workshop on Data-driven Resilience Research (Vol. 3376). Leipzig, Germany: arXiv. Retrieved from https://ceur-ws.org/Vol-3376/
  • Vejdemo-Johansson, M., CUNY College of Staten Island, 2800 Victory Boulevard, 1S- 215, Mukherjee, S., CUNY Graduate Center, 365 5th A., New York NY 10016, U., Analytics, C. for S. D., et al. (2022). Multiple hypothesis testing with persistent homology. Found. Data Sci., 4(4), 667–705. American Institute of Mathematical Sciences (AIMS).
  • Vejdemo-Johansson, M., & Mukherjee, S. (2022). Multiple hypothesis testing with persistent homology. Foundations of Data Science, 4(4), 667–705. Retrieved from https://www.aimsciences.org/article/id/63610aba6aa93c5ff77671ee
  • Velez, M., Jamshidi, P., Siegmund, N., Apel, S., & Kästner, C. (2022). On debugging the performance of configurable software systems. In Proceedings of the 44th International Conference on Software Engineering. Pittsburgh Pennsylvania: ACM.
  • Vorkel, D., & Haase, R. (2022). GPU-accelerating ImageJ Macro image processing workflows using CLIJ. In Bioimage Data Analysis Workflows--Advanced Components and Methods (pp. 89–114). Springer International Publishing Cham.
  • Vrandev ci’c, D., Pintscher, L., & Krötzsch, M. (2023). Wikidata: The Making Of. In Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, & G.-J. Houben (Eds.), Companion Proceedings of the ACM Web Conference 2023 (WWW’23) (pp. 615–624). United States of America: Association for Computing Machinery (ACM), New York.
  • Walther, G., Martin, C., Haase, A., Nestler, U., & Schob, S. (2022). Machine learning for rupture risk prediction of intracranial aneurysms: Challenging the PHASES score in geographically constrained areas. Symmetry, Special Issue: Neuroscience and Molecular Sciences, 14(5), 943. MDPI AG.
  • Waltz, M., Kumar Singh, A., & Okhrin, O. (2022). Vulnerability-CoVaR: investigating the crypto-market. Quant. Finance, 22(9), 1731–1745. Informa UK Limited.
  • Waltz, M., & Okhrin, O. (2022). Two-sample testing in reinforcement learning. arXiv.
  • Wessels, F., Schmitt, M., Krieghoff-Henning, E., Kather, J. N., Nientiedt, M., Kriegmair, M. C., Worst, T. S., et al. (2022). Deep learning can predict survival directly from histology in clear cell renal cell carcinoma. PLoS One, 17(8), e0272656.
  • Wiegmann, M., Völske, M., Stein, B., & Potthast, M. (2022). Language Models as Context-sensitive Word Search Engines. In Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022) (pp. 39–45). Dublin, Ireland: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2022.in2writing-1.5
  • Wiese, L., & Weil, J. (2022). Endangering Democratic Debate? A Fundamental Rights Analysis of Automated Content Moderation in Social Media.
  • Williams, E., Kienast, M., Medawar, E., Reinelt, J., Merola, A., Ines Klopfenstein, S. A., Flint, A. R., et al. (2022). FHIR-DHP: A Standardized Clinical Data Harmonisation Pipeline for scalable AI application deployment. medRxiv, 2022–11. Cold Spring Harbor Laboratory Press.
  • Williams, R., Bornmann, L., & Thor, A. (2022). Panel Data and Multilevel Analyses of Academic Publishing Success Paper. SSRN Electronic Journal.
  • Wörtz, J., Smith, V., Fallmann, J., König, S., Thuraisingam, T., Walther, P., Urlaub, H., et al. (2022). Cas1 and Fen1 Display Equivalent Functions During Archaeal DNA Repair. Frontiers in Microbiology, 13. Frontiers Media SA. Retrieved from http://dx.doi.org/10.3389/fmicb.2022.822304
  • Wolf, S., Mahecha, M. D., Sabatini, F. M., Wirth, C., Bruelheide, H., Kattge, J., Moreno Martínez, Álvaro, et al. (2022). Citizen science plant observations encode global trait patterns. Nature Ecology & Evolution, 6(12), 1850–1859. Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1038/s41559-022-01904-x
  • Wolska, M., Schröder, C., Borchardt, O., Stein, B., & Potthast, M. (2022, September). Trigger Warnings: Bootstrapping a Violence Detector for FanFiction.
  • Xavier, L. C. P., da Silva, S. M. O., Carvalho, T. M. N., Filho, J. D. P., & de Assis de Souza Filho, F. (2020). Use of Machine Learning in Evaluation of Drought Perception in Irrigated Agriculture: The Case of an Irrigated Perimeter in Brazil. Water, 12(6), 1546. Multidisciplinary Digital Publishing Institute.
  • Xu, C., Su, F., & Lehmann, J. (2022). Time-aware Graph Neural Networks for Entity Alignment between Temporal Knowledge Graphs. Retrieved from https://arxiv.org/abs/2203.02150
  • Xu, C., Su, F., Xiong, B., & Lehmann, J. (2022). Time-aware Entity Alignment using Temporal Relational Attention. In Proceedings of the ACM Web Conference 2022, WWW ’22 (pp. 788–797). Virtual Event, Lyon, France: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3485447.3511922
  • Zangerle, E., Mayerl, M., Potthast, M., & Stein, B. (2022). Overview of the Style Change Detection Task at PAN 2022.
  • Zeng, Q., Klein, C., Caruso, S., Maille, P., Laleh, N. G., Sommacale, D., Laurent, A., et al. (2022). Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J. Hepatol., 77(1), 116–127. Elsevier BV.
  • Zhao, Q., Yan, B., Shi, Y., & Middendorf, M. (2022). Evolutionary Dynamic Multiobjective Optimization via Learning From Historical Search Process. IEEE Transactions on Cybernetics, 52(7), 6119–6130.
  • Zoraghi, M., Scherf, N., Jaeger, C., Sack, I., Hirsch, S., Hetzer, S., & Weiskopf, N. (2022). Effect of brain tissue deformation on functional MRI signal variations assessed using biomechanical simulations. In Joint Annual Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting.
funded by:
Gefördert vom Bundesministerium für Bildung und Forschung.
Gefördert vom Freistaat Sachsen.