JavaScript is required to use this site. Please enable JavaScript in your browser settings.

2023

  • Abdelhamid, I., Muscoloni, A., Rotscher, D. M., Lieber, M., Markwardt, U., & Cannistraci, C. V. (2023, August). Network shape intelligence outperforms AlphaFold2 intelligence in vanilla protein interaction prediction. bioRxiv.
  • Adama, S., & Bogdan, M. (2023). Assessing consciousness in patients with disorders of consciousness using soft-clustering. Brain Inform., 10(1), 16.
  • Adama, S., & Bogdan, M. (2023). Sleep analysis in a CLIS patient using soft-clustering: a case study. Bruges (Belgium) and online: Ciaco - i6doc.com.
  • Agazzi, A., Lu, J., & Mukherjee, S. (2023). Global optimality of Elman-type RNNs in the mean-field regime. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, & J. Scarlett (Eds.), Proceedings of the 40th International Conference on Machine Learning, Proceedings of Machine Learning Research (Vol. 202, pp. 196–227). PMLR. Retrieved from https://proceedings.mlr.press/v202/agazzi23a.html
  • Ahmadi, N., Zoch, M., Kelbert, P., Noll, R., Schaaf, J., Wolfien, M., & Sedlmayr, M. (2023). Methods Used in the Development of Common Data Models for Health Data: Scoping Review. JMIR medical informatics, 11. JMIR Publications Inc.
  • Akiki, C., Ogundepo, O., Piktus, A., Zhang, X., Oladipo, A., Lin, J., & Potthast, M. (2023). Spacerini: Plug-and-play search engines with Pyserini and Hugging Face. arXiv.
  • Akshay, A., Abedi, M., Shekarchizadeh, N., Burkhard, F. C., Katoch, M., Bigger-Allen, A., Adam, R. M., et al. (2023). MLcps: machine learning cumulative performance score for classification problems. GigaScience, 12, giad108. Retrieved from https://doi.org/10.1093/gigascience/giad108
  • Al Khatib, K., Voelske, M., Le, A., Syed, S., Potthast, M., & Stein, B. (2023). A New Dataset for Causality Identification in Argumentative Texts. In Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue (pp. 349–354). Association for Computational Linguistics. Retrieved from http://dx.doi.org/10.18653/v1/2023.sigdial-1.31
  • Al-Fatlawi, A., Menzel, M., & Schroeder, M. (2023). Is Protein BLAST a thing of the past?. Nature communications, 14(1). Nature Publishing Group.
  • Al-Fatlawi, A., Rusadze, E., Shmelkin, A., Malekian, N., Ozen, C., Pilarsky, C., & Schroeder, M. (2023). Netrank: network-based approach for biomarker discovery. BMC bioinformatics, 24(1). BioMed Central, London.
  • Al-Fatlawi, A., Schroeder, M., & Stewart, A. F. (2023). The Rad52 SSAP superfamily and new insight into homologous recombination. Communications biology, 6(1). Springer Nature.
  • Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferrandis, C. M., Muennighoff, N., et al. (2023). SantaCoder: don’t reach for the stars!. arXiv.
  • Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferrandis, C. M., Muennighoff, N., et al. (2023). SantaCoder: don’t reach for the stars!. Retrieved from https://arxiv.org/abs/2301.03988
  • Álvarez, L. G., Rudolph, S., & Straß, H. (2023). Pushing the Boundaries of Tractable Multiperspective Reasoning: A Deduction Calculus for Standpoint EL+. In P. Marquis, T. C. Son, & G. Kern-Isberner (Eds.), Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning (pp. 333–343). IJCAI Inc.
  • Álvarez, L. G., Rudolph, S., & Straß, H. (2023). Tractable Diversity: Scalable Multiperspective Ontology Management via Standpoint EL. In Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 (pp. 3258–3267). ijcai.org.
  • Anders, I. M., Schimmelpfennig, C., Wiedemann, K., Löffler, D., Kämpf, C., Blumert, C., Reiche, K., et al. (2023). Atypical fibroxanthoma and pleomorphic dermal sarcoma – gene expression analysis compared with undifferentiated cutaneous squamous cell carcinoma. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 21(5), 482–491. Wiley. Retrieved from http://dx.doi.org/10.1111/ddg.15006
  • Anders, J., & Stadler, P. F. (2023). textttRNAcode_Web -- Convenient Identification of Evolutionary Conserved Protein Coding Regions. J. Integrative Bioinf.
  • Anders, J., & Stadler, P. F. (2023). RNAcode_Web – Convenient identification of evolutionary conserved protein coding regions. Journal of Integrative Bioinformatics, 20(3). Walter de Gruyter GmbH. Retrieved from http://dx.doi.org/10.1515/jib-2022-0046
  • Andersen, J. L., Banke, S., Fagerberg, R., Flamm, C., Merkle, D., & Stadler, P. F. (2023). On the realisability of chemical pathways. In International Symposium on Bioinformatics Research and Applications (pp. 409–419). Springer.
  • Arndt, D., & Mennicke, S. (2023). Notation3 as an Existential Rule Language. In Rules and Reasoning - 7th International Joint Conference on Rules and Reasoning, RuleML+RR 2023, Proceedings. Springer.
  • Asaadi, S., Giesbrecht, E., & Rudolph, S. (2023). Compositional matrix-space models of language: Definitions, properties, and learning methods. Natural Language Engineering, 29(1), 1–49. Cambridge University Press.
  • Assinger, P., & Hummel, S. (2023). Introductory Overview. In Shaping Tomorrow Today, Lernweltforschung (pp. 1–12). Germany: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Avila Santos, A. P., Kabiru Nata’ala, M., Kasmanas, J. C., Bartholomäus, A., Keller-Costa, T., Jurburg, S. D., Tal, T., et al. (2023). The AnimalAssociatedMetagenomeDB reveals a bias towards livestock and developed countries and blind spots in functional-potential studies of animal-associated microbiomes. Animal Microbiome, 5(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1186/s42523-023-00267-3
  • Baader, F. (2023). Optimal Repairs in Ontology Engineering as Pseudo-Contractions in Belief Change. In Proceedings of the ACM Symposium on Applied Computing (pp. 983–990). Association for Computing Machinery.
  • Baader, F. (2023). Relating optimal repairs in ontology engineering with contraction operations in belief change. ACM SIGAPP Appl. Comput. Rev., 23(3), 5–18. Association for Computing Machinery (ACM).
  • Baader, F., & Bortoli, F. D. (2023). On the Abstract Expressive Power of Description Logics with Concrete Domains. In Description Logics. Retrieved from https://ceur-ws.org/Vol-3515/paper-3.pdf
  • Baader, F., Koopmann, P., & Kriegel, F. (2023). Optimal Repairs in the Description Logic ℰℒ Revisited (Extended Version) ( No. 23-03). Dresden, Germany: Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden.
  • Baader, F., Kriegel, F., & Nuradiansyah, A. (2023). Treating role assertions as first-class citizens in repair and error-tolerant reasoning. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (pp. 974–982). Tallinn Estonia: ACM.
  • Baader, F., Kriegel, F., & Nuradiansyah, A. (2023). Error-Tolerant Reasoning in ℰℒ w.r.t. Optimal ABox Repairs (Extended Abstract). In Proceedings of the 36th International Workshop on Description Logics (DL 2023), Rhodes, Greece, September 2-4, 2023, CEUR Workshop Proceedings. CEUR-WS.org.
  • Baek, Y., Aquino, W., & Mukherjee, S. (2023). Generalized Bayes approach to inverse problems with model misspecification. Inverse Problems, 39(10), 105011. IOP Publishing. Retrieved from http://dx.doi.org/10.1088/1361-6420/acf51c
  • Baek, Y., Berchuck, S., & Mukherjee, S. (2023). Asymptotics of Bayesian Uncertainty Estimation in Random Features Regression. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), Advances in Neural Information Processing Systems (Vol. 36, pp. 40140–40153). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2023/file/7e16384b94a1c7e4462a70bb8fb93ca9-Paper-Conference.pdf
  • Barrón-Cedeño, A., Martino, G., Esposti, M., Faggioli, G., Ferro, N., Hanbury, A., Macdonald, C., et al. (2023). Report on the 13th Conference and Labs of the Evaluation Forum (CLEF 2022): Experimental IR Meets Multilinguality, Multimodality, and Interaction. ACM SIGIR Forum, 56, 1–15.
  • Bartok, L., Donner, M.-T., Ebner, M., Gosch, N., Handle-Pfeiffer, D., Hummel, S., Kriegler-Kastelic, G., et al. (2023). Learning Analytics--Studierende im Fokus. Zeitschrift für Hochschulentwicklung, 18(Sonderheft Hochschullehre), 223–250.
  • Bartok, L., Donner, M.-T., Ebner, M., Gosch, N., Handle-Pfeiffer, D., Hummel, S., Kriegler-Kastelic, G., et al. (2023). Learning Analytics -- Studierende im Fokus. Verlag der Technischen Universität Graz & Verein Forum neue Medien in der Lehre Austria.
  • Batebi, H., Pérez-Hernández, G., Mathiesen, J., Shi, M., Tiemann, J. K., Guixà-González, R., Reinhardt, F., et al. (2023). Mechanistic insights into G protein association with a G protein-coupled receptor.
  • Bauer, C., Carterette, B., Ferro, N., Fuhr, N., Beel, J., Breuer, T., Clarke, C. L., et al. (2023). Report on the Dagstuhl Seminar on Frontiers of Information Access Experimentation for Research and Education. In ACM SIGIR Forum (Vol. 57, pp. 1–28). ACM New York, NY, USA.
  • Bauer, M., & Augenstein, C. (2023). Can Unlabelled Data Improve AI Applications? A Comparative Study on Self-Supervised Learning in Computer Vision. In Proceedings of the 18th Conference on Computer Science and Intelligence Systems, FedCSIS 2023 (Vol. 35, pp. 93–101). IEEE. Retrieved from http://dx.doi.org/10.15439/2023F8371
  • Bauer, M., Uhrich, B., Schäfer, M., Theile, O., Augenstein, C., & Rahm, E. (2023). Multi-modal artificial intelligence in additive manufacturing: Combining thermal and camera images for 3D-print quality monitoring. In Proceedings of the 25th International Conference on Enterprise Information Systems. Prague, Czech Republic: SCITEPRESS - Science and Technology Publications.
  • Baumann, R., & Heine, A.-M. (2023). On conflict-free labellings -- realizability, construction and patterns of redundancy. In Proceedings of the Twentieth International Conference on Principles of Knowledge Representation and Reasoning (pp. 721–725). Rhodes, Greece: International Joint Conferences on Artificial Intelligence Organization.
  • Baumann, R., & Heinrich, M. (2023). Bipolar Abstract Dialectical Frameworks Are Covered by Kleene’s Three-valued Logic. In Thirty-Second International Joint Conference on Artificial Intelligence (Vol. 3, pp. 3123–3131).
  • Baumann, R., & Penndorf, C. (2023). Static and dynamic orderings on Dungean argumentation frameworks-An overview. International Journal of Approximate Reasoning, 109036. Elsevier.
  • Baumann, R., Rapberger, A., & Ulbricht, M. (2023). Equivalence in Argumentation Frameworks with a Claim-centric View: Classical Results with Novel Ingredients. Journal of Artificial Intelligence Research, 77, 891–948. AI Access Foundation. Retrieved from http://dx.doi.org/10.1613/jair.1.14625
  • Beege, B., Eichhorn, M., Heitz, R., Köhler, T., Markgraf, D., Meier, J.-M., Messemer, H., et al. (2023). Enhancing Collaboration and Digital Teaching Competencies in Higher Education: The KoKoN Project. e-learning and education, (se2023).
  • Beltran Velandia, F., Bogdan, M., Scherf, N., & Schönwiesner, M. (2023). Modelling the olfactory system using spiking neural networks with synaptic dynamics to study drifting in electronic noses. In Scientific Advisory Board (SAB) Meeting.
  • Bennett, B., & Álvarez, L. G. (2023). Vagueness in Predicates and Objects. In Proceedings of the 13th International Conference on Formal Ontology in Information Systems, FOIS 2023.
  • Bentler, M., Hardet, R., Ertelt, M., Rudolf, D., Kaniowska, D., Schneider, A., Vondran, F. W., et al. (2023). Modifying immune responses to adeno-associated virus vectors by capsid engineering. Molecular Therapy-Methods & Clinical Development, 30, 576–592. Elsevier.
  • Berthold, M., Knorr, M., & Odekerken, D. (2023). Proceedings 39th international conference on logic programming. Electron. Proc. Theor. Comput. Sci., 385, 321–323. Open Publishing Association.
  • Berthold, M., Rapberger, A., & Ulbricht, M. (2023). Forgetting aspects in assumption-based argumentation. In Proceedings of the Twentieth International Conference on Principles of Knowledge Representation and Reasoning (pp. 86–96). Rhodes, Greece: International Joint Conferences on Artificial Intelligence Organization.
  • Berthold, M., Rapberger, A., & Ulbricht, M. (2023). On the expressive power of assumption-based argumentation. In European Conference on Logics in Artificial Intelligence (pp. 145–160). Springer.
  • Bevendorff, J., Chinea-R’ios, M., Franco-Salvador, M., Heini, A., Körner, E., Kredens, K., Mayerl, M., et al. (2023). Overview of PAN 2023: Authorship verification, multi-author writing style analysis, profiling cryptocurrency influencers, and trigger detection. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 518–526). Cham: Springer Nature Switzerland.
  • Bevendorff, J., Sauer, P., Gienapp, L., Kircheis, W., Körner, E., Stein, B., & Potthast, M. (2023). SMAuC -- The Scientific Multi-Authorship Corpus. In 23rd ACM/IEEE Joint Conference on Digital Libraries (JCDL 2023).
  • Beylier, C., Scherf, N., & Doeller, C. F. (2023). The development of representations in artificial agents. In Scientific Advisory Board (SAB) Meeting.
  • Blache, U., Kebbel, K., Quaiser, A., Popp, G., Franz, P., Dünkel, A., Thoma, M., et al. (2023). Technologien und Lösungsansätze für die effiziente Herstellung von Zelltherapeutika für die CAR-Immuntherapie. In (pp. 123–137).
  • Bogdan, M. (2023). Is Boredom an Indicator on the way to Singularity of Artificial Intelligence? Hypotheses as Thought-Provoking Impulse. Bruges (Belgium) and online: Ciaco - i6doc.com.
  • Bolz, S. N., & Schroeder, M. (2023). Promiscuity in drug discovery on the verge of the structural revolution: recent advances and future chances. Expert Opinion on Drug Discovery, 18(9), 973–985. Informa UK Limited. Retrieved from http://dx.doi.org/10.1080/17460441.2023.2239700
  • Bondarenko, A., Fröbe, M., Kiesel, J., Schlatt, F., Barriere, V., Ravenet, B., Hemamou, L., et al. (2023). Overview of touché 2023: Argument and causal retrieval. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 527–535). Cham: Springer Nature Switzerland.
  • Borisova, E., Abu Ahmad, R., Rehm, G., Usbeck, R., D’Souza, J., Stocker, M., Auer, S., et al. (2023). NFDI4DS Transfer and Application. Gesellschaft für Informatik e.V. Retrieved from https://dl.gi.de/handle/20.500.12116/43024
  • Bortz, M., Dadhe, K., Engell, S., Gepert, V., Kockmann, N., Müller-Pfefferkorn, R., Schindler, T., et al. (2023). AI in process industries -- current status and future prospects. Chem. Ing. Tech., 95(7), 975–988. Wiley.
  • Bran, A. M., Stadler, P. F., Jost, J., & Restrepo, G. (2023). The six stages of the convergence of the periodic system to its final structure. Communications Chemistry, 6(1), 87. Nature Publishing Group UK London.
  • Brandt, G., Balfanz, A., Fomferra, N., Morbagal Harish, T., Mahecha, M., Kraemer, G., Montero, D., et al. (2023). DeepESDL-an open platform for research and collaboration in Earth Sciences. In EGU General Assembly Conference Abstracts (p. EGU-15225).
  • Bremer, P.-T., Spears, B., Gibbs, T., & Bussmann, M. (2023). AI-Augmented Facilities: Bridging Experiment and Simulation with ML (Dagstuhl Seminar 23132). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. Retrieved from https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.3.106
  • Broséus, J., Hergalant, S., Vogt, J., Tausch, E., Kreuz, M., Mottok, A., Schneider, C., et al. (2023). Molecular characterization of Richter syndrome identifies de novo diffuse large B-cell lymphomas with poor prognosis. Nature Communications, 14(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1038/s41467-022-34642-6
  • Brown, B. P., Stein, R. A., Meiler, J., & Mchaourab, H. (2023). Approximating conformational Boltzmann distributions with AlphaFold2 predictions. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2023.08.06.552168
  • Buchmann, E. (2023). Long-Term Risks of IoT Devices: The Case of the Smart Fridge. In Proceedings of the 17th Conference on Digital Society (ICDS’23).
  • Buchmann, E., & Jüttner, V. (2023). Die Entwicklung eines digitalen Praktikums der Cybersicherheit im Bereich Smart Home. In Tagungsband der 21. Fachtagung Bildungstechnologien der GI Fachgruppe Bildungstechnologien (DELFI 2023).
  • Buchmann, E., & Thor, A. (2023). Online Exams in the Era of ChatGPT. In 21. Fachtagung Bildungstechnologien (DELFI) (pp. 79–84). Bonn: Gesellschaft für Informatik e.V.
  • Bühler, D., Power Guerra, N., Müller, L., Wolkenhauer, O., Düffer, M., Vollmar, B., Kuhla, A., et al. (2023). Leptin deficiency-caused behavioral change - A comparative analysis using EthoVision and DeepLabCut. Frontiers in neuroscience, 17. Frontiers Media S.A.
  • Caprio, M., & Mukherjee, S. (2023). Extended probabilities and their application to statistical inference. Retrieved from https://arxiv.org/abs/2111.01050
  • Caprio, M., & Mukherjee, S. (2023). Ergodic theorems for dynamic imprecise probability kinematics. International Journal of Approximate Reasoning, 152, 325–343. Retrieved from https://www.sciencedirect.com/science/article/pii/S0888613X2200175X
  • Caprio, M., & Mukherjee, S. (2023). Concentration inequalities and optimal number of layers for stochastic deep neural networks. Retrieved from https://arxiv.org/abs/2206.11241
  • Carnot, M. L., Heinemann, L., Braker, J., Schreieder, T., Kiesel, J., Fröbe, M., Potthast, M., et al. (2023). On Stance Detection in Image Retrieval for Argumentation. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’23 (pp. 2562–2571). Taipei, Taiwan: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3539618.3591917
  • Carvalho, T. M. N. (2023). Machine Learning for Water Resources Management.
  • Carvalho, T. M. N., de Assis de Souza Filho, F., & de Brito, M. M. (2023). Water management assessment with text mining. EGU General Assembly Conference Abstracts, EGU-8349.
  • Chafra, F., Borim Correa, F., Oni, F., Konu Karakayali, Özlen, Stadler, P. F., & Nunes da Rocha, U. (2023). StandEnA: a customizable workflow for standardized annotation and generating a presence--absence matrix of proteins. Bioinformatics Advances, 3(1), vbad069. Oxford University Press.
  • Chafra, F., Borim Correa, F., Oni, F., Konu Karakayalı, Özlen, Stadler, P. F., & Nunes da Rocha, U. (2023). StandEnA: a customizable workflow for standardized annotation and generating a presence–absence matrix of proteins. (S. Forslund, Ed.)Bioinformatics Advances, 3(1). Oxford University Press (OUP). Retrieved from http://dx.doi.org/10.1093/bioadv/vbad069
  • Chamness, L. M., Kuntz, C. P., McKee, A. G., Penn, W. D., Hemmerich, C. M., Rusch, D. B., Woods, H., et al. (2023). Divergent Pairwise Epistasis in the Context of Unstable Membrane Protein Variants. eLife Sciences Publications, Ltd. Retrieved from http://dx.doi.org/10.7554/eLife.92406.1
  • Charaf, N., Haase, J., Kulisch, A., Elm, C. V., & Göhringer, D. (2023). RTASS: a RunTime Adaptable and Scalable System for Network-on-Chip-Based Architectures. In 2023 26th Euromicro Conference on Digital System Design (DSD) (pp. 585–592). IEEE. Retrieved from https://dsd-seaa2023.com/dsd/
  • Cherif, E., Feilhauer, H., Berger, K., Dao, P. D., Ewald, M., Hank, T. B., He, Y., et al. (2023). From spectra to plant functional traits: Transferable multi-trait models from heterogeneous and sparse data. Remote Sensing of Environment, 292, 113580. Elsevier.
  • Cherif, E., Feilhauer, H., Berger, K., Dao, P. D., Ewald, M., Hank, T. B., He, Y., et al. (2023). From spectra to plant functional traits: Transferable multi-trait models from heterogeneous and sparse data. Remote Sens. Environ., 292(113580), 113580. Elsevier BV.
  • Cherif, E., Feilhauer, H., Berger, K., Ewald, M., Hank, T. B., Kovach, K. R., Townsend, P. A., et al. (2023). From spectra to functional plant traits: Transferable multi-trait models from heterogeneous and sparse data. EGU General Assembly Conference Abstracts, EGU-10901.
  • Chlumsky, R., Mai, J., Craig, J. R., & Tolson, B. A. (2023, March). Advancement of a blended hydrologic model for robust model performance.
  • Christen, P., & Schnell, R. (2023). Thirty-three myths and misconceptions about population data: from data capture and processing to linkage. Int. J. Popul. Data Sci., 8(1), 2115. Swansea University.
  • Cichos, F., Landin, S. M., & Pradip, R. (2023). Chapter 5 - Artificial intelligence (AI) enhanced nanomotors and active matter. In Y. Zheng & Z. Wu (Eds.), Intelligent Nanotechnology, Materials Today (pp. 113–144). Elsevier. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780323857963000056
  • Ciotta, G., Singh, S., Gupta, A., Torres, D. C., Fu, J., Choudhury, R., Chu, W. K., et al. (2023, April). The BOD1L subunit of the mammalian SETD1A complex sustains the expression of DNA damage repair genes despite restraining H3K4 trimethylation. bioRxiv.
  • Corona-Gomez, J. A., Stadler, P. F., & Fernandez-Valverde, S. L. (2023). Evolutionary conservation of secondary structures in the lncRNAs of plants. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2023.08.13.553158
  • De Bortoli, F., & Baader, F. (2023). On the Abstract Expressive Power of Description Logics with Concrete Domains (Extended Version). LTCS-Report, LTCS-Report. Technische Universität Dresden.
  • De Bortoli, F., & Baader, F. (2023). On the Abstract Expressive Power of Description Logics with Concrete Domains. In A. Ozaki, C. Lutz, & O. Kutz (Eds.), Proceedings of the 36th International Workshop on Description Logics, CEUR Workshop Proceedings (Vol. 3515). CEUR-WS.org.
  • de Camargo e Souza Câmara, I., & Turhan, A.-Y. (2023). Deciding subsumption in defeasible $$textbackslashmathcal ELI_textbackslashbot $$ with typicality models. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 531–546). Cham: Springer Nature Switzerland.
  • de Lima, J. P. C., Khan, A. A., Farzaneh, H., & Castrillon, J. (2023). Efficient Associative Processing with RTM-TCAMs. In 1st in-Memory Architectures and Computing Applications Workshop (iMACAW), co-located with the 60th Design Automation Conference (DAC’23) (p. 2pp). San Francisco, CA, USA.
  • Deckers, N., Fröbe, M., Kiesel, J., Pandolfo, G., Schröder, C., Stein, B., & Potthast, M. (2023). The infinite index: Information retrieval on generative text-to-image models. In Proceedings of the 2023 conference on human information interaction and retrieval (pp. 172–186).
  • Deckers, N., Peters, J., & Potthast, M. (2023). Manipulating Embeddings of Stable Diffusion Prompts.
  • Deckers, N., & Potthast, M. (2023). Towards the Reproducible Evaluation of Generative Information Retrieval Systems. In Workshop on the impact of generative AI on search and search engine research.
  • Diebel-Fischer, H. (2023). Vom Wurstessen zur Revolution?. Pastoraltheologie, 112(1), 44–56. Brill Deutschland GmbH.
  • Diebel-Fischer, H. (2023). Technisch realisierte Ethik?: Anthropologische Perspektiven auf das Verhältnis von Technik und Ethik. Mensch und Maschine im Zeitalter, 49–64. Lit.
  • Diebel-Fischer, H. (2023). Humankind and biotechnology. Habermas, Kierkegaard, and a religious perspective on enhancement. In Kierkegaard and Bioethics (pp. 107–122). New York: Routledge.
  • Diebel-Fischer, H., Kunkel, N., & Zeyher-Quattlender, J. (2023). Mensch und Maschine im Zeitalter" Künstlicher Intelligenz": theologisch-ethischer Herausforderungen (Vol. 45). LIT Verlag Münster.
  • Dietrich, K., & Kerschke, P. (2023). Evaluation of Algorithms from the Nevergrad Toolbox on the Strictly Box-Constrained SBOX-COST Benchmarking Suite. In Proceedings of the Companion Conference on Genetic and Evolutionary Computation, GECCO ’23 Companion (pp. 2326–2329). Lisbon, Portugal: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3583133.3596396
  • Dimopoulos, Y., Dvov rák, W., König, M., Rapberger, A., Ulbricht, M., & Woltran, S. (2023). Sets Attacking Sets in Abstract Argumentation. TU Wien.
  • Ding, J., Akiki, C., Jernite, Y., Steele, A. L., & Popo, T. (2023). Towards openness beyond Open access: User journeys through 3 Open AI collaboratives. arXiv.
  • Donner, M.-T., & Hummel, S. (2023). Digitalisation of Examination Formats in Higher Education – Corona-related Changes. In S. Hummel & M.-T. Donner (Eds.), Student Assessment in Digital and Hybrid Learning Environments, Doing Higher Education (1. Auflage., pp. 86–107). Germany: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Donner, M.-T., & Hummel, S. (2023). Learning Analytics - Studierende im Fokus. Zeitschrift für Hochschulentwicklung, 18(April 2023), 223–250. Österreichische Gesellschaft für Hochschuldidaktik.
  • Dutta, S., Russig, B., & Gumhold, S. (2023). GPU-Accelerating Hierarchical Descriptors for Point Set Registration. In .
  • Dykes, N., Wilson, A., & Uhrig, P. (2023). A pipeline for the creation of multimodal corpora from YouTube videos. In (pp. 1–5). Association for Computational Lingustics.
  • Dyrna, J., Lorenz, R., Miranda, C. G., Heitz, R., & Köhler, T. (2023). Social VR as an approach to foster collaboration among scientists and educators within the networked infrastructure for education. e-learning and education, (se2023).
  • Ebel, P., Bazilinskyy, P., Hwang, A. H.-C., Ju, W., Sandhaus, H., Srinivasan, A. R., Yang, Q., et al. (2023). Breaking Barriers: Workshop on Open Data Practices in AutoUI Research. In Adjunct Proceedings of the 15th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 227–230).
  • Ebel, P., Gülle, K. J., Lingenfelder, C., & Vogelsang, A. (2023). Exploring Millions of User Interactions with ICEBOAT: Big Data Analytics for Automotive User Interfaces. In Proceedings of the 15th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 81–92).
  • Ebel, P., Lingenfelder, C., & Vogelsang, A. (2023). Multitasking while driving: How drivers self-regulate their interaction with in-vehicle touchscreens in automated driving. Int. J. Hum. Comput. Interact., 39(16), 3162–3179. Informa UK Limited.
  • Ebert, M. P., Meindl-Beinker, N. M., Gutting, T., Maenz, M., Betge, J., Schulte, N., Zhan, T., et al. (2022). Second-line therapy with nivolumab plus ipilimumab for older patients with oesophageal squamous cell cancer (RAMONA): a multicentre, open-label phase 2 trial. Lancet Healthy Longev., 3(6), e417-e427. Elsevier BV.
  • Egger, R., & Hummel, S. (2023). Biographieforschung und Hochschulforschung. In D. Nittel, H. von Felden, & M. Mendel (Eds.), Handbuch Erziehungswissenschaftliche Biographieforschung und Biographiearbeit (pp. 577–588). Beltz Juventa.
  • Eichholz, H. M., Kretzschmar, J., Watson-Parris, D., Umlauft, J., & Quaas, J. (2023). Towards machine-learning calibration of cloud parameters in the kilometre-resolution ICON atmosphere model. In EGU General Assembly Conference Abstracts (p. EGU-5003).
  • Eidi, M., & Mukherjee, S. (2023). Irreducibility of Markov Chains on simplicial complexes, the Spectrum of the Discrete Hodge Laplacian and Homology. Retrieved from https://arxiv.org/abs/2310.07912
  • Ellenberg, M. O., Satkowski, M., Luo, W., & Dachselt, R. (2023). Spatiality and Semantics - Towards Understanding Content Placement in Mixed Reality. In CHI 2023 - Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 254:1–254:8). United States of America: Association for Computing Machinery (ACM), New York.
  • Elstner, T., Loebe, F., Ajjour, Y., Akiki, C., Bondarenko, A., Fröbe, M., Gienapp, L., et al. (2023). Shared tasks as tutorials: A methodical approach. Proc. Conf. AAAI Artif. Intell., 37(13), 15807–15815. Association for the Advancement of Artificial Intelligence (AAAI).
  • Elwasif, W., Godoy, W., Hagerty, N., Harris, J. A., Hernandez, O., Joo, B., Kent, P., et al. (2023). Application Experiences on a GPU-Accelerated Arm-based HPC Testbed. In Proceedings of the HPC Asia 2023 Workshops, HPCAsia ’23 Workshops (pp. 35–49). Raffles Blvd, Singapore: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3581576.3581621
  • Emmrich, F., Álvarez, L. G., & Straß, H. (2023). Automated Reasoning Support for Standpoint-OWL 2. In S. de Cesare & T. P. Sales (Eds.), Proceedings of th 13th International Conference on Formal Ontology in Information Systems (FOIS 2023), Ontology Showcase and Demonstrations Track.
  • Estévez, M., Roldan, E., & Segerman, H. (2023). Surfaces in The Tesseract.
  • Färber, M., Coutinho, M., & Yuan, S. (2023). Biases in scholarly recommender systems: impact, prevalence, and mitigation. Scientometrics, 128(5), 2703–2736. Springer.
  • Faggioli, G., Dietz, L., Clarke, C., Demartini, G., Hagen, M., Hauff, C., Kando, N., et al. (2023). Perspectives on large language models for relevance judgment. arXiv.
  • Fensel, A., Ozaki, A., Roman, D., & Soylu, A. (2023). Rules and Reasoning: 7th International Joint Conference, RuleML+ RR 2023, Oslo, Norway, September 18--20, 2023, Proceedings (Vol. 14244). Springer Nature.
  • Fernández Gil, O., Patrizi, F., Perelli, G., & Turhan, A.-Y. (2023). Optimal alignment of temporal knowledge bases. In Frontiers in Artificial Intelligence and Applications, Frontiers in artificial intelligence and applications. IOS Press.
  • Fetcko-Fayad, K., Zheng, X., Godfrey, D., Kirveslahti, H., Mukherjee, S., Lafata, K., Thomas, J., et al. (2023). NIMG-47. LONGITUDINAL TRAJECTORIES FROM SERIAL SURVEILLANCE MRI IMAGING OF PROGRESSIVE IDH MUTANT LOW-GRADE GLIOMA PATIENTS. Neuro-Oncology, 25(Supplement_5), v196-v196. Retrieved from https://doi.org/10.1093/neuonc/noad179.0743
  • Fiedler, L., Bernt, M., Middendorf, M., & Stadler, P. F. (2023). Detecting gene breakpoints in noisy genome sequences using position-annotated colored de-Bruijn graphs. BMC Bioinformatics, 24(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1186/s12859-023-05371-4
  • Filho, F. A. S., Studart, T. M. C., Filho, J. D. P., Martins, E. S. P. R., Ayrimoraes, S. R., Pessoa, C. A. P., Rolim, L. Z. R., et al. (2023). Integrated proactive drought management in hydrosystems and cities: building a nine-step participatory planning methodology. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 115(3), 2179–2204. Springer & International Society for the Prevention and Mitigation of Natural Hazards.
  • Flamm, C., Müller, S., & Stadler, P. F. (2023). Every atom-atom map can be explained by electron pushing diagrams. arXiv. Retrieved from https://arxiv.org/abs/2311.13492
  • Flegel, T., Neumann, A., Holst, A.-L., Kretzschmann, O., Loderstedt, S., Tästensen, C., Gutmann, S., et al. (2024). Machine learning algorithms predict canine structural epilepsy with high accuracy. Frontiers in Veterinary Science, 11. Retrieved from https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2024.1406107
  • Frenzel, J., Kulkarni, A. D., Döbel, S., Wesarg, B., Knespel, M., & Brunst, H. (2023). FROOM: A Framework of Operators for OTF2 Modification. In Proceedings of 2023 SC Workshops of the International Conference on High Performance Computing, Network, Storage, and Analysis, SC Workshops 2023, SC: The International Conference for High Performance Computing, Networking, Storage, and Analysis (pp. 1403–1411). United States of America: Association for Computing Machinery (ACM), New York.
  • Frey, J., Hofer, M., & Hellmann, S. (2023). Studying Linked Data Accessibility Healthiness for the Long Tail of the Data Web. In QuWeDa/MEPDaW@ ISWC (pp. 55–64).
  • Frey, M., Doeller, C. F., & Barry, C. (2023). Probing neural representations of scene perception in a hippocampally dependent task using artificial neural networks. arXiv.
  • Fröbe, M., Elstner, T., Scells, H., & Potthast, M. (2023). Prototyping Open Web Search Applications with TIRA: A Case Study in Research-oriented Teaching. In A. Wagner, C. Guetl, M. Granitzer, & S. Voigt (Eds.), 5th International Symposium on Open Search Technology (OSSYM 2023). International Open Search Symposium. Retrieved from https://e-publishing.cern.ch/index.php/OSSYM
  • Fröbe, M., Gienapp, L., Potthast, M., & Hagen, M. (2023). Bootstrapped nDCG estimation in the presence of unjudged documents. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 313–329). Cham: Springer Nature Switzerland.
  • Fröbe, M., Günther, S., Probst, M., Potthast, M., & Hagen, M. (2022). Webis-MS-MARCO-Anchor-Texts-22. Zenodo.
  • Fröbe, M., Hendriksen, G., de Vries, A. P., & Potthast, M. (2023). Open Web Search at LongEval 2023: Reciprocal Rank Fusion on Automatically Generated Query Variants. Sl: CEUR.
  • Fröbe, M., Reimer, J. H., MacAvaney, S., Deckers, N., Bevendorff, J., Stein, B., Hagen, M., et al. (2023). The Information Retrieval Experiment Platform (Extended Abstract). In Lernen. Wissen. Daten. Analysen. -- LWDA 2023, CEUR Workshop Proceedings (pp. 179–191). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-3630/LWDA2023-paper16.pdf
  • Fröbe, M., Reimer, J. H., MacAvaney, S., Deckers, N., Reich, S., Bevendorff, J., Stein, B., et al. (2023). The information retrieval experiment platform. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. Taipei Taiwan: ACM.
  • Fröbe, M., Stein, B., Gollub, T., Hagen, M., & Potthast, M. (2023). SemEval-2023 Task 5: Clickbait Spoiling. In Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023). Toronto, Canada: Association for Computational Linguistics.
  • Fröbe, M., Wiegmann, M., Kolyada, N., Grahm, B., Elstner, T., Loebe, F., Hagen, M., et al. (2023). Continuous integration for reproducible shared tasks with TIRA.Io. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 236–241). Cham: Springer Nature Switzerland.
  • Funk, M., Hosemann, S., Jung, J. C., & Lutz, C. (2023). Towards Ontology Construction with Language Models. Retrieved from https://arxiv.org/abs/2309.09898
  • Gärtner, C., Fallmann, J., Stadler, P. F., Kaiser, T., & Berkemer, S. J. (2023). Toward a Systematic Assessment of Sex Differences in Cystic Fibrosis. Journal of Personalized Medicine, 13(6), 924. MDPI.
  • Gaggl, S., Martinez, M. V., & Ortiz, M. (Eds.). (2023). Logics in Artificial Intelligence: 18th European Conference, JELIA 2023, Dresden, Germany, September 20--22, 2023, Proceedings. Lecture notes in computer science, Lecture notes in computer science. Cham: Springer Nature Switzerland.
  • Garc’ia-Col’in, N., Leemans, D., Mussig, M., & Rold’an, ’Erika. (2023). There is no perfect Mondrian partition for squares of side lengths less than 1001. In . Retrieved from https://api.semanticscholar.org/CorpusID:265033502
  • Geldhauser, C., & Diebel-Fischer, H. (2023). Zwei Kulturen der Digitalisierung – Zur Rolle der Theologie im Prozess der Quantifizierung der Welt.
  • Gernat, T., Jagla, T., Jones, B. M., Middendorf, M., & Robinson, G. E. (2023). Automated monitoring of honey bees with barcodes and artificial intelligence reveals two distinct social networks from a single affiliative behavior. Scientific Reports, 13(1), 1541. Retrieved from https://doi.org/10.1038/s41598-022-26825-4
  • Gienapp, L., Kircheis, W., Sievers, B., Stein, B., & Potthast, M. (2023). A large dataset of scientific text reuse in Open-Access publications. Scientific Data, 10(1), 58. Nature Publishing Group UK London.
  • Gienapp, L., Scells, H., Deckers, N., Bevendorff, J., Wang, S., Kiesel, J., Syed, S., et al. (2023). Evaluating Generative Ad Hoc Information Retrieval. arXiv.
  • Gigante, N., Álvarez, L. G., & Lyon, T. (2023). Standpoint Linear Temporal Logic. In Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning (pp. 311–321). IJCAI Inc.
  • Gil, O. F., & Marantidis, P. (2023). Towards Extending the Description Logic FL0 with Threshold Concepts Using Weighted Tree Automatas. In Description Logics.
  • Gillmann, C., Maack, R. G. C., Raith, F., Pérez, J. F., & Scheuermann, G. (2023). A taxonomy of uncertainty events in visual analytics. IEEE Computer Graphics and Applications. IEEE.
  • Gillmann, C., Schmidt, J., & Wiegreffe, D. (2023). Visualization in the Wild. IEEE Comput. Graph. Appl., 43(6), 46–49. Institute of Electrical and Electronics Engineers (IEEE).
  • Giovanni, F. D., Giusti, L., Barbero, F., Luise, G., Lio’, P., & Bronstein, M. (2023). On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology. Retrieved from https://arxiv.org/abs/2302.02941
  • Glatte, B., Wenk, K., Grahnert, A., Friedrich, M., Merz, M., Vucinic, V., Fischer, L., et al. (2023). Teclistamab impairs detection of BCMA CAR-T cells. Blood Advances, 7(15), 3842–3845. American Society of Hematology. Retrieved from http://dx.doi.org/10.1182/bloodadvances.2023009714
  • Gleicher, M., Riveiro, M., von Landesberger, T., Deussen, O., Chang, R., Gillman, C., & Rhyne, T.-M. (2023). A problem space for designing visualizations. IEEE Comput. Graph. Appl., 43(4), 111–120.
  • Gohsen, M., Hagen, M., Potthast, M., & Stein, B. (2023). Paraphrase Acquisition from Image Captions. arXiv.
  • Gollub, T., Brockmeyer, J., Stein, B., & Potthast, M. (2023). Dynamic Exploratory Search for the Information Retrieval Anthology. In European Conference on Information Retrieval (pp. 242–247). Springer.
  • González, L., Ivliev, A., Krötzsch, M., & Mennicke, S. (2023). Efficient Dependency Analysis for Existential Rules.
  • Grieb, N., Schmierer, L., Kim, H. U., Strobel, S., Schulz, C., Meschke, T., Kubasch, A. S., et al. (2023). A digital twin model for evidence-based clinical decision support in multiple myeloma treatment. Frontiers in Digital Health, 5. Frontiers Media SA. Retrieved from http://dx.doi.org/10.3389/fdgth.2023.1324453
  • Groß, R., & Jordan, R. (2023). KI-Realitäten: Modelle, Praktiken und Topologien maschinellen Lernens.
  • Gulsevin, A., Han, B., Porta, J. C., Mchaourab, H. S., Meiler, J., & Kenworthy, A. K. (2023). Template-free prediction of a new monotopic membrane protein fold and assembly by AlphaFold2. Biophysical Journal, 122(11), 2041–2052. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.bpj.2022.11.011
  • Gupta, A., Günther, U., Incardona, P., Reina, G., Frey, S., Gumhold, S., & Sbalzarini, I. F. (2023). Efficient Raycasting of Volumetric Depth Images for Remote Visualization of Large Volumes at High Frame Rates. In 2023 IEEE 16th Pacific Visualization Symposium (PacificVis) (Vol. 19, p. 61�70). IEEE. Retrieved from http://dx.doi.org/10.1109/PacificVis56936.2023.00014
  • Hahm, N., Morawetz, E., & Thor, A. (2023). 8. Die Materialität analog-digitaler Schnittstellen: Usability-Testung Stift-basierter Eingabegeräte für E-Assessment-Szenarien. Digitale Lehre im Rahmen der Grundlagenausbildung in MINT-Fächern an Hochschulen, 127.
  • Hahm, N., Morawetz, E., & Thor, A. (2023). Digitale Werkzeuge : Untersuchung zu Potenzial und Grenzen Stift-basierter Eingabegeräte. In (pp. 145–149).
  • Hanle, B., Loebe, F., Burek, P., & Herre, H. (2023). Balls and Universal Space in GFO. In JOWO.
  • Hannemann, A., & Buchmann, E. (2023). Is homomorphic encryption feasible for smart mobility?. In Annals of Computer Science and Information Systems. IEEE.
  • Hannemann, A., Ünal, A. B., Swaminathan, A., Buchmann, E., & Akgün, M. (2023). A privacy-preserving Federated Learning Approach for kernel methods. arXiv.
  • Hannemann, A., Ünal, A. B., Swaminathan, A., Buchmann, E., & Akgün, M. (2023). A privacy-preserving framework for collaborative machine learning with kernel methods. In 2023 5th IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). Atlanta, GA, USA: IEEE.
  • Hart, F., Okhrin, O., & Treiber, M. (2023). Vessel-following model for inland waterways based on deep reinforcement learning. Ocean engineering, 281. Elsevier Science B.V.
  • Hautsch, N., Okhrin, O., & Ristig, A. (2023). Maximum-Likelihood Estimation Using the Zig-Zag Algorithm. Journal of Financial Econometrics, 21(4), 1346–1375. Retrieved from https://ideas.repec.org/a/oup/jfinec/v21y2023i4p1346-1375. html
  • Heinz, C. N., Echle, A., Foersch, S., Bychkov, A., & Kather, J. N. (2022). The future of artificial intelligence in digital pathology - results of a survey across stakeholder groups. Histopathology, 80(7), 1121–1127. Wiley.
  • Hellmuth, M., Huber, K. T., Moulton, V., Scholz, G. E., & Stadler, P. F. (2023). Injective split systems. Graphs and Combinatorics, 39(4), 65. Springer.
  • Hellmuth, M., Schaller, D., & Stadler, P. F. (2023). Clustering systems of phylogenetic networks. Theory in Biosciences, 142(4), 301–358. Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1007/s12064-023-00398-w
  • Hellmuth, M., Stadler, P. F., & Thekkumpadan Puthiyaveedu, S. (2023). Fitch Graph Completion. In Computing and Combinatorics (pp. 225–237). Springer Nature Switzerland. Retrieved from http://dx.doi.org/10.1007/978-3-031-49193-1_17
  • Hergl, C., Witt, C., Nsonga, B., Menzel, A., & Scheuermann, G. (2023). Electromechanical Coupling in Electroactive Polymers – a Visual Analysis of a Third-Order Tensor Field. IEEE Transactions on Visualization and Computer Graphics, 29(12), 5357–5371.
  • Herrmann, L., Peth, V., & Rudolph, S. (2023). Decidable (ac)counting with Parikh and Muller: Adding Presburger Arithmetic to monadic second-Order Logic over tree-interpretable structures.
  • Hummel, S., Köhler, T., Brouwer-Zupancic, N., Egger, R., & Rieger, M. (2023). Empowering Students with AI-based Chatbot Assistants: A New Era of Higher Education?. In T. Köhler, E. Schoop, N. Kahnwald, & R. Sonntag (Eds.), Inklusiv digital: Gemeinschaft offen gestalten Selbstbestimmte Teilhabe an der digitalen Transformation. Dresden: TUDpress - Verlag der Wissenschaften.
  • Hummel, S. (2023). Empowering Education in Cambodia and Sri Lanka: Advancing Quality in 21st Century Teaching and Learning. (S. Hummel, Ed.).
  • Hummel, S. (2023). KI-Innovationen: Neue Horizonte für die Erwachsenenbildung. Die österreichische Volkshochschule : Magazin für die Erwachsenenbildung, 2023(280). Verb., Wien.
  • Hummel, S. (2023). Embodied Teaching: Corporeal Expressiveness in Pedagogical Communication.
  • Hummel, S., Aldrian, S., & Sheehan, B. (2023). Development of Pedagogical Skills and Practices: A Case Study from Sri Lanka.
  • Hummel, S., Assinger, P., Bauer, C., Brudermann, T., Jany, A., Jury, M., Rauter, R., et al. (2023). Shaping Tomorrow Today-SDGs from Multiple Perspectives. Springer.
  • Hummel, S., Bohlinger, S., & Sheehan, B. (2023). CONTESSA – An Innovative Program Fostering Pedagogical Professionalization.
  • Hummel, S., Brodacz-Geier, M., & Brouwer-Zupanicic, N. (2023). VISIONtextquoterights E-Course: The Visionair. University of Graz.
  • Hummel, S., & Donner, M.-T. (2023). Introduction. In S. Hummel & M.-T. Donner (Eds.), Student Assessment in Digital and Hybrid Learning Environments, Doing Higher Education (1st ed., pp. 1–8). Germany: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Hummel, S., & Donner, M.-T. (2023). KI-Anwendungen in der Hochschulbildung aus Studierendenperspektive. FNMA Magazin, 2023(3), 38. Verein Forum neue Medien in der Lehre Austria, Graz.
  • Hummel, S., & Donner, M.-T. (Eds.). (2023). Student Assessment in Digital and Hybrid Learning Environments. Doing Higher Education, Doing Higher Education (1st ed.). Germany: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Hummel, S., & Donner, M.-T. (2023). Learning Analytics für die Hochschullehre. University of Graz.
  • Hummel, S., & Donner, M.-T. (2023). Lehren mit Learning Analytics. University of Graz.
  • Hummel, S., Donner, M.-T., & Egger, R. (2023). Lehren mit Learning Analytics: Empfehlungen für das Coaching von Lehrenden. University of Graz.
  • Hummel, S., Donner, M.-T., & Egger, R. (2023). Lehren mit Learning Analytics: Qualifizierungsprogramm für die Hochschullehre. University of Graz.
  • Hummel, S., Donner, M.-T., Wadhwa, G., & Abbas, S. H. (2023). Enhancing Learning Paths with AI-Mentoring. In . Retrieved from https://www.bifold.berlin/news-events/events/view/event-details/ki-symposium-the-effects-of-ai-research-in-germany#:~:text=Scientific%20exchange%20and%20networking%20among,10%2C%202023%2C%20in%20Berlin.
  • Hummel, S., Egger, R., & Donner, M.-T. (2023). Lehren mit KI: Learning Analytics für mehr Studierendenorientierung in der Hochschullehre?. In T. Köhler, E. Schoop, N. Kahnwald, & R. Sonntag (Eds.), Gemeinschaften in Neuen Medien. Digitalität und Diversität. Mit digitaler Transformation Barrieren überwinden!? 26. Workshop GeNeMe’23. (p. 7). Deutschland: TUDpress/Thelem Universitätsverlag.
  • Hummel, S., Köhler, T., Brouwer-Zupancic, N., Egger, R., & Rieger, M. (2023). Empowering Students with AI-based Chatbot Assistants.
  • Hummel, S., Köhler, T., Brouwer-Zupanicic, N., Egger, R., & Rieger, M. (2023). Empowering Students with AI-based Chatbot Assistants: A New Era of Higher Education?. In T. Kohler, E. Schoop, N. Kahnwald, & R. Sonntag (Eds.), Communities in New Media. Inclusive digital: Forming Community in an Open Way Self-determined Participation in the Digital Transformation (pp. 38–43). Germany: TUDpress/Thelem Universitätsverlag. Retrieved from https://tu-dresden.de/codip/ergebnisse-transfer/veranstaltungen/geneme
  • Hummel, S., Meas, N., & Vithanapathirana, M. (2023). The Project CONTESSA - Contemporary Teaching Skills for South Asia. Capacity Building in Education. Weiterbildung : Zeitschrift für Grundlagen, Praxis und Trends, 2023(1), 36–39. ZIEL-Verlag.
  • Hummel, S., & Vithanapathirana, M. (2023). Enhancing Contemporary Teaching Skills to Address the Changing Role of Teachers as a Result of the Long-Term Social Impacts of the Covid-19 Pandemic. In Proceedings of the International Webinar on Long-Term Social Impacts of the Covid-19 Pandemic (pp. 98–103). The National Academy of Sciences of Sri Lanka.
  • Incardona, P., Gupta, A., Yaskovets, S., & Sbalzarini, I. F. (2023). A C++ Library for Memory Layout and Performance Portability of Scientific Applications. In J. Singer, Y. Elkhatib, D. Blanco Heras, P. Diehl, N. Brown, & A. Ilic (Eds.), Euro-Par 2022, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 109–120). Germany: Springer Science and Business Media B.V.
  • Incardona, P., Gupta, A., Yaskovets, S., & Sbalzarini, I. F. (2023). A portable C++ library for memory and compute abstraction on multi?core CPUs and GPUs. Concurrency and Computation: Practice and Experience, 35(25). Wiley. Retrieved from http://dx.doi.org/10.1002/cpe.7870
  • Intemann, T., Kaulke, K., Kipker, D.-K., Lettieri, V., Stallmann, C., Schmidt, C., O. Geidel, L., et al. (2023). White Paper - Verbesserung des Record Linkage für die Gesundheitsforschung in Deutschland : August 2023. (N.-N. F. für personenbezogene Gesundheitsdaten, Ed.). NFDI4Health - Nationale Forschungsdateninfrastruktur für personenbezogene Gesundheitsdaten (Projekt).
  • Interdisciplinary Center for Bioinformatics & Leipzig University, L., Gonzalez Laffitte, M. E., Beier, N., Domschke, N., & Stadler, P. F. (2023). Comparison of atom maps. Match (Mulh.), 90(1), 75–102. University Library in Kragujevac.
  • Ionescu, B., Müller, H., Druagulinescu, A. M., Idrissi-Yaghir, A., Radzhabov, A., Herrera, A. G. S. de, Andrei, A., et al. (2024). Advancing Multimedia Retrieval in Medical, Social Media and Content Recommendation Applications with ImageCLEF 2024. In N. Goharian, N. Tonellotto, Y. He, A. Lipani, G. McDonald, C. Macdonald, & I. Ounis (Eds.), Advances in Information Retrieval (pp. 44–52). Cham: Springer Nature Switzerland.
  • Iporre-Rivas, A., Saur, D., Rohr, K., Scheuermann, G., & Gillmann, C. (2023). Stroke-GFCN: ischemic stroke lesion prediction with a fully convolutional graph network. J. Med. Imaging (Bellingham), 10(4), 044502. SPIE-Intl Soc Optical Eng.
  • Iskandar, V., Abd El Ghany, M. A., & Goehringer, D. (2023). Auto-DOK: Compiler-assisted automatic detection of offload kernels for FPGA-HBM architectures. In 2023 26th Euromicro Conference on Digital System Design (DSD). Golem, Albania: IEEE.
  • Iskandar, V., Abd El Ghany, M. A., & Goehringer, D. (2023). Auto-DOK: Compiler-Assisted Automatic Detection of Offload Kernels for FPGA-HBM Architectures. In S. Niar, H. Ouarnoughi, & A. Skavhaug (Eds.), Proceedings - 2023 26th Euromicro Conference on Digital System Design, DSD 2023 (pp. 577–584). United States of America: Institute of Electrical and Electronics Engineers Inc. Retrieved from https://dsd-seaa2023.com/dsd/
  • Iskandar, V., Abd El Ghany, M. A., & Goehringer, D. (2023). NDP-RANK: Prediction and ranking of NDP systems performance using machine learning. Microprocessors and Microsystems, 96, 104707. Retrieved from https://www.sciencedirect.com/science/article/pii/S014193312200237X
  • Iskandar, V., El Ghany, M. A. A., & Goehringer, D. (2023). Performance estimation and prototyping of reconfigurable near-memory computing systems. In 2023 33rd International Conference on Field-Programmable Logic and Applications (FPL). Gothenburg, Sweden: IEEE.
  • Iskandar, V., El Ghany, M. A. A., & Goehringer, D. (2023). Compiler-assisted kernel selection for FPGA-based near-memory computing platforms. In 2023 IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). Marina Del Rey, CA, USA: IEEE.
  • Iskandar, V., El Ghany, M. A., & Goehringer, D. (2023). Compiler-Assisted Kernel Selection for FPGA-based Near-Memory Computing Platforms. In Proceedings - 31st IEEE International Symposium on Field-Programmable Custom Computing Machines, FCCM 2023, Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (p. 222). United States of America: Institute of Electrical and Electronics Engineers Inc. Retrieved from https://www.fccm.org/past/2023/
  • Iskandar, V., El Ghany, M. A., & Goehringer, D. (2023). Performance Estimation and Prototyping of Reconfigurable Near-Memory Computing Systems. In N. Mentens, N. Mentens, L. Sousa, P. Trancoso, N. Papadopoulou, & I. Sourdis (Eds.), Proceedings - 2023 33rd International Conference on Field-Programmable Logic and Applications, FPL 2023, International Conference on Field Programmable Logic and Applications (FPL) (pp. 357–358). United States of America: Institute of Electrical and Electronics Engineers Inc. Retrieved from https://2023.fpl.org/
  • Ivliev, A., Ellmauthaler, S., Gerlach, L., Marx, M., Meißner, M., Meusel, S., & Krötzsch, M. (2023). Nemo: First glimpse of a new rule engine. arXiv.
  • Joharinad, P., & Jost, J. (2023). Linear methods: Kernels, variations, and averaging. In Mathematics of Data (pp. 165–191). Cham: Springer International Publishing.
  • Joharinad, P., & Jost, J. (2023). Metrics and curvature. In Mathematics of Data (pp. 253–270). Cham: Springer International Publishing.
  • Joharinad, P., & Jost, J. (2023). Manifold learning, the scheme of Laplacian eigenmaps. In Mathematics of Data (pp. 227–251). Cham: Springer International Publishing.
  • Joharinad, P., & Jost, J. (2023). Nonlinear Schemes: Clustering, Feature Extraction and Dimension Reduction. In Mathematical Principles of Topological and Geometric Data Analysis (pp. 193–226). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-031-33440-5_7
  • Joharinad, P., & Jost, J. (2023). Topological foundations, hypercomplexes and homology. In Mathematics of Data (pp. 15–64). Cham: Springer International Publishing.
  • Joharinad, P., & Jost, J. (2023). The Laplace operator and the geometry of graphs. In Mathematics of Data (pp. 83–113). Cham: Springer International Publishing.
  • Joharinad, P., & Jost, J. (2023). Mathematical principles of topological and geometric data analysis. Cham: Springer International Publishing.
  • Joharinad, P., & Jost, J. (2023). Weighted complexes, cohomology and Laplace operators. In Mathematics of Data (pp. 65–81). Cham: Springer International Publishing.
  • Joharinad, P., & Jost, J. (2023). Metric spaces and manifolds. In Mathematics of Data (pp. 115–164). Cham: Springer International Publishing.
  • Jost, J., Lalli, R., Laubichler, M. D., Olbrich, E., Renn, J., Restrepo, G., Stadler, P. F., et al. (2023). Computational History: Challenges and Opportunities of Formal Approaches. Journal of Social Computing, 4(3), 232–242. Institute of Electrical and Electronics Engineers (IEEE). Retrieved from http://dx.doi.org/10.23919/JSC.2023.0017
  • Jost, J., & Restrepo, G. (2023). Self-reinforcing mechanisms driving the evolution of the chemical space. Perspect. Sci., 1–39. MIT Press.
  • Jüttner, V., Grimmer, M., & Buchmann, E. (2023). ChatIDS: Explainable Cybersecurity Using Generative AI.
  • Junker, H., Meiler, J., & Schoeder, C. T. (2023). Interplay of thermodynamics and evolution within the ternary ligand-GPCR-G protein complex. Curr. Opin. Struct. Biol., 82, 102656.
  • Käther, K., Lemke, S., & Stadler, P. F. (2023). Annotation-Free Identification of Potential Synteny Anchors. In Bioinformatics and Biomedical Engineering (pp. 217–230). Springer Nature Switzerland. Retrieved from http://dx.doi.org/10.1007/978-3-031-34953-9_17
  • Kaiser, T. K., Kluth, C., & Hamann, H. (2023). Evolving dynamic collective behaviors by minimizing surprise. In The 2023 Conference on Artificial Life. MIT Press.
  • Kaiser, T. K., Potten, T., & Hamann, H. (2023). Evolution of collective decision-making mechanisms for collective perception. In 2023 IEEE Congress on Evolutionary Computation (CEC). Chicago, IL, USA: IEEE.
  • Kalms, L., Nickel, M., & Göhringer, D. (2023). ArcvaVX: OpenVX Framework for Adaptive Reconfigurable Computer Vision Architectures. In F. Palumbo, G. Keramidas, N. Voros, & P. C. Diniz (Eds.), Applied Reconfigurable Computing. Architectures, Tools, and Applications - 19th International Symposium, ARC 2023, Proceedings, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 97–112). Germany: Springer Science and Business Media B.V. Retrieved from http://arcsymposium.org/
  • Kaltenecker, C., Mühlbauer, S., Grebhahn, A., Siegmund, N., & Apel, S. (2023). Performance evolution of configurable software systems: an empirical study. Empirical Software Engineering, 28(6), 152. Springer.
  • Karami, S., Saberi-Movahed, F., Tiwari, P., Marttinen, P., & Vahdati, S. (2023). Unsupervised feature selection based on variance–covariance subspace distance. Neural Networks, 166, 188–203. Retrieved from https://www.sciencedirect.com/science/article/pii/S0893608023003295
  • Karge, J. (2023). Voting for Bins: Integrating Imprecise Probabilistic Beliefs into the Condorcet Jury Theorem. In C. K. Baker, L. G. Álvarez, J. Heyninck, T. Meyer, R. Pe~naloza, & S. Vesic (Eds.), Joint Proceedings of the 2nd Workshop on Knowledge Diversity and the 2nd Workshop on Cognitive Aspects of Knowledge Representation co-located with 20th International Conference on Principles of Knowledge Representation and Reasoning (KR2023), Rhodes, Greece, September 3-4, 2023, CEUR Workshop Proceedings (Vol. 3548). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-3548/paper2.pdf
  • Karge, J. (2023). Second-order Confidence in Supervaluationism. Journal for General Philosophy of Science. Springer.
  • Kasmanas, J. C., Bartholomäus, A., Corrêa, F. B., Tal, T., Jehmlich, N., Herberth, G., von Bergen, M., et al. (2021). HumanMetagenomeDB: a public repository of curated and standardized metadata for human metagenomes. Nucleic Acids Res., 49(D1), D743-D750. Oxford University Press (OUP).
  • Katsanidou, A., Kneuer, M., Bensmann, F., Dimitrov, D., & Dietze, S. (2023). Limitations of democratic rights during the Covid-19 pandemic---exploring the citizens’ perception and discussions on dangers to democracy in Germany. Z. Vgl. Polit., 16(4), 635–661. Springer Science and Business Media LLC.
  • Kerschke, P., & Preuss, M. (2023). Exploratory Landscape Analysis. In Proceedings of the Companion Conference on Genetic and Evolutionary Computation, GECCO ’23 Companion (pp. 990–1007). Lisbon, Portugal: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3583133.3595058
  • Kestemont, M., Manjavacas, E., Markov, I., Bevendorff, J., Wiegmann, M., Stamatatos, E., Stein, B., et al. (2021). Overview of the cross-domain authorship verification task at PAN 2021. In G. Faggioli, N. Ferro, A. Joly, M. Maistro, & F. Piroi (Eds.), CLEF-WN 2021 - Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings (Vol. 2936, pp. 1743–1759). CEUR-WS.
  • Kim, Preethaa, Chen, Natarajan, Wadhwa, & Lee. (2023). Predicting the lateral displacement of tall buildings using an LSTM-based deep learning approach. Wind and Structures, 36(6), 379–392.
  • Kim, B., Preethaa, K. S., Chen, Z., Natarajan, Y., Wadhwa, G., & Lee, H. M. (2023). Predicting the lateral displacement of tall buildings using an LSTM-based deep learning approach. Wind and Structures, 36(6), 379–392. Techno-Press.
  • Kircheis, W., Schmidt, M., Simons, A., Stein, B., & Potthast, M. (2023). Mining the History Sections of Wikipedia Articles on Science and Technology. In 2023 ACM/IEEE Joint Conference on Digital Libraries (JCDL) (pp. 200–204).
  • Kirsten, O., Bogdan, M., & Adama, S. (2023). Evaluating the DoC-Forest tool for Classifying the State of Consciousness in a Completely Locked-In Syndrome Patient. In 2023 7th International Conference on Imaging, Signal Processing and Communications (ICISPC) (pp. 37–41).
  • Klapproth, C., Zöztsche, S., Kühnl, F., Fallmann, J., Stadler, P. F., & Findeiß, S. (2023, July). Tailored machine learning models for functional RNA detection in genome-wide screens (Version 1). Zenodo.
  • Klemm, K., Mehta, A., & Stadler, P. F. (2023). Optimisation via encodings: a renormalisation group perspective. Journal of Physics A: Mathematical and Theoretical, 56(48), 485001. IOP Publishing.
  • Klemm, P., Stadler, P. F., & Lechner, M. (2023). Proteinortho6: pseudo-reciprocal best alignment heuristic for graph-based detection of (co-) orthologs. Frontiers in Bioinformatics, 3, 1322477. Frontiers Media SA.
  • Knauer, R., & Rodner, E. (2023). Cost-Sensitive Best Subset Selection for Logistic Regression: A Mixed-Integer Conic Optimization Perspective. In KI 2023: Advances in Artificial Intelligence: 46th German Conference on AI, Berlin, Germany, September 26--29, 2023, Proceedings (pp. 114–129). Berlin, Germany: Springer-Verlag.
  • Knutzen, F., Averbeck, P., Barrasso, C., Bouwer, L. M., Gardiner, B., Grünzweig, J. M., Hänel, S., et al. (2023). Impacts and damages of the European multi-year drought and heat event 2018–2022 on forests, a review.
  • Koch, M., Kober, S., Straburzynski, S., Gaunitz, B., & Franczyk, B. (2023). Federated Learning for Data Trust in Logistics. In Position Papers of the 18th Conference on Computer Science and Intelligence Systems, FedCSIS 2023 (Vol. 36, pp. 51–58). PTI. Retrieved from http://dx.doi.org/10.15439/2023F5947
  • Kolberg, T., von Löhneysen, S., Ozerova, I., Wellner, K., Hartmann, R. K., Stadler, P. F., & Mörl, M. (2023). Led-Seq: ligation-enhanced double-end sequence-based structure analysis of RNA. Nucleic Acids Research, 51(11), e63-e63. Oxford University Press.
  • Korchmaros, A., Schaller, D., Hellmuth, M., & Stadler, P. F. (2023). Quasi-best match graphs. Discrete Applied Mathematics, 331, 104–125. Retrieved from https://www.sciencedirect.com/science/article/pii/S0166218X23000173
  • Korn, M., Méndez, J., Klüppelholz, S., Langner, R., Baier, C., & Dachselt, R. (2023). PMC-VIS: An Interactive Visualization Tool for Probabilistic Model Checking. In International Conference on Software Engineering and Formal Methods (pp. 361–375). Springer.
  • Korol, G., Jordan, M. G., Rutzig, M. B., Castrillon, J., & Beck, A. C. S. (2023). Design Space Exploration for CNN Offloading to FPGAs at the Edge. In F. Kastensmidt, R. Reis, A. Todri-Sanial, H. Li, & C. Metzler (Eds.), 2023 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2023 - Proceedings, IEEE Computer Society Annual Symposium on VLSI. United States of America: IEEE Computer Society. Retrieved from https://www.ufrgs.br/isvlsi2023/
  • Korol, G., Jordan, M. G., Rutzig, M. B., Castrillon, J., & Beck, A. C. S. (2023). Pruning and Early-Exit Co-Optimization for CNN Acceleration on FPGAs. In 2023 Design, Automation and Test in Europe Conference and Exhibition, DATE 2023 - Proceedings, Proceedings -Design, Automation and Test in Europe, DATE. United States of America: Institute of Electrical and Electronics Engineers Inc. Retrieved from https://date23.date-conference.com/
  • Kramm, A., Friske, J., & Peukert, E. (2023). Detecting floors in residential buildings. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 130–143). Cham: Springer Nature Switzerland.
  • Kretzschmar, V., Scheuermann, G., Stommel, M., & Gillmann, C. (2023). A Visual Analytics Inspired Approach to Correlate and Understand Multiple Mechanical Tensor Fields. In 2023 IEEE 16th Pacific Visualization Symposium (PacificVis) (pp. 107–111).
  • Krug, K., Satkowski, M., Docea, R., Ku, T.-Y., & Dachselt, R. (2023). Point Cloud Alignment through Mid-Air Gestures on a Stereoscopic Display. In CHI 2023 - Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 230:1–230:7). United States of America: Association for Computing Machinery (ACM), New York.
  • Kuhtz, M., Gerritzen, J., Wiegand, J., Hornig, A., & Gude, M. (2023). Modelling delamination in fibre-reinforced composites subjected to through-thickness compression by an adapted cohesive law. In 14th European LS-DYNA Users Conference. DYNAmore GmbH. Retrieved from https://www.dynamore.de/de/fortbildung/konferenzen/vergangene/14-europaeische-ls-dyna-konferenz-2023
  • Kukushkin, M., Enders, M., Kaschuba, R., Bogdan, M., & Schmid, T. (2023). Canola seed or not? Autoencoder-based Anomaly Detection in AgriculturalSeedProduction. In INFORMATIK 2023 - Designing Futures: Zukünfte gestalten (pp. 1645–1652). Bonn: Gesellschaft für Informatik e.V.
  • Kumar, N., Krause, L., Wondrak, T., Eckert, S., Eckert, K., & Gumhold, S. (2023). Learning to reconstruct the bubble distribution with conductivity maps using Invertible Neural Networks and Error Diffusion. arXiv preprint arXiv:2307.02496.
  • Kumar, N., Šegvić, S., Eslami, A., & Gumhold, S. (2023). Normalizing Flow based Feature Synthesis for Outlier-Aware Object Detection. Retrieved from https://arxiv.org/abs/2302.07106
  • Kumar, N., v Segvi’c, S. sa, Eslami, A., & Gumhold, S. (2023). Normalizing Flow based Feature Synthesis for Outlier-Aware Object Detection.
  • Kumar, N., vSegvi’c, S., Eslami, A., & Gumhold, S. (2023). Normalizing Flow Based Feature Synthesis for Outlier-Aware Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5156–5165).
  • Kumar, S., Tahmasbi, H., Ramakrishna, K., Lokamani, M., Nikolov, S., Tranchida, J., Wood, M. A., et al. (2023). Transferable interatomic potential for aluminum from ambient conditions to warm dense matter. Phys. Rev. Res., 5(3). American Physical Society (APS).
  • Kutz, M. (2023). Mit Robotern beten?:(Zukunfts-) Fragen zum Verhältnis von Mensch und Künstlicher Intelligenz. Mensch und Maschine im Zeitalter, 133–152. Lit.
  • Kutz, O., Lutz, C., & Ozaki, A. (2023). Proceedings of the 36th International Workshop on Description Logics (DL 2023). Co-located with the 20th International Conference on Principles of Knowledge Representation and Reasoning and the 21st International Workshop on Non-Monotonic Reasoning (KR 2023 and NMR 2023). Rhodes, Greece, September 2-4, 2023. In . CEUR-WS. org.
  • Lampe, L., Huppertz, H.-J., Anderl-Straub, S., Albrecht, F., Ballarini, T., Bisenius, S., Mueller, K., et al. (2023). Multiclass prediction of different dementia syndromes based on multi-centric volumetric MRI imaging. NeuroImage Clin., 37(103320), 103320. Elsevier BV.
  • Lange, L., Degenkolb, B., & Rahm, E. (2023). Privacy-preserving stress detection using smartwatch health data. In . Gesellschaft für Informatik e.V.
  • Lange, L., Schneider, M., & Rahm, E. (2023). Privacy in Practice: Private COVID-19 Detection in X-Ray Images. 20th International Conference on Security and Cryptography, SECRYPT 2023.
  • Lange, L., Schreieder, T., Christen, V., & Rahm, E. (2023). Slice it up: Unmasking user identities in smartwatch health data.
  • Lange, M., Granados, A., VijayKumar, S., Bragantini, J., Ancheta, S., Santhosh, S., Borja, M., et al. (2023). Zebrahub--Multimodal zebrafish developmental atlas reveals the State-transition dynamics of late-vertebrate pluripotent axial progenitors. BioRxiv, 2023–03. Cold Spring Harbor Laboratory.
  • Lange, M., Granados, A., VijayKumar, S., Bragantini, J., Ancheta, S., Santhosh, S., Borja, M., et al. (2023). Zebrahub--Multimodal zebrafish developmental atlas reveals the State-transition dynamics of late-vertebrate pluripotent axial progenitors. BioRxiv, 2023–03. Cold Spring Harbor Laboratory.
  • Lauber-Roensberg, A., & Hetmank, S. (2023). Urheberrecht und Patentrecht.
  • Laurençon, H., Saulnier, L., Wang, T., Akiki, C., del Moral, A. V., Scao, T. L., Werra, L. V., et al. (2023). The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset. Retrieved from https://arxiv.org/abs/2303.03915
  • Ledwitch, K. V., Künze, G., McKinney, J. R., Okwei, E., Larochelle, K., Pankewitz, L., Ganguly, S., et al. (2023). Sparse pseudocontact shift NMR data obtained from a non-canonical amino acid-linked lanthanide tag improves integral membrane protein structure prediction. J. Biomol. NMR, 77(3), 69–82.
  • Lehmann, J., Ferré, S., & Vahdati, S. (2023). Language Models as Controlled Natural Language Semantic Parsers for Knowledge Graph Question Answering. In K. Gal, A. Nowé, G. J. Nalepa, R. Fairstein, & R. Radulescu (Eds.), ECAI 2023 - 26th European Conference on Artificial Intelligence, September 30 - October 4, 2023, Kraków, Poland - Including 12th Conference on Prestigious Applications of Intelligent Systems (PAIS 2023), Frontiers in Artificial Intelligence and Applications (Vol. 372, pp. 1348–1356). IOS Press. Retrieved from https://doi.org/10.3233/FAIA230411
  • Lehtonen, T., Rapberger, A., Ulbricht, M., & Wallner, J. P. (2023). Argumentation frameworks induced by assumption-based argumentation: Relating size and complexity. In Proceedings of the Twentieth International Conference on Principles of Knowledge Representation and Reasoning (pp. 440–450). Rhodes, Greece: International Joint Conferences on Artificial Intelligence Organization.
  • Li, D., & Okhrin, O. (2023). Modified DDPG car-following model with a real-world human driving experience with CARLA simulator. Transportation Research Part C: Emerging Technologies, 147, 103987. Retrieved from https://www.sciencedirect.com/science/article/pii/S0968090X22004004
  • Li, D., & Okhrin, O. (2023). Vision-Based DRL Autonomous Driving Agent with Sim2Real Transfer. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023, IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC (pp. 866–873). United States of America: Institute of Electrical and Electronics Engineers Inc. Retrieved from https://2023.ieee-itsc.org/
  • Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., et al. (2023). StarCoder: may the source be with you!. arXiv.
  • Liessmann, F., Künze, G., & Meiler, J. (2023). Improving the modeling of extracellular ligand binding pockets in RosettaGPCR for conformational selection. Int. J. Mol. Sci., 24(9).
  • Liu, Y., Rai, S., Ullah, S., & Kumar, A. (2023). NetPU-M: a Generic Reconfigurable Neural Network Accelerator Architecture for MLPs. In 2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (pp. 85–92).
  • Liu, Y., Rai, S., Ullah, S., & Kumar, A. (2023). High-Flexibility Designs of Quantized Runtime Reconfigurable Multi-Precision Multipliers. IEEE Embedded Systems Letters, 15(4), 194–197.
  • Liu, Y. (Lance), Wang, Y., Vu, O., Moretti, R., Bodenheimer, B., Meiler, J., & Derr, T. (2023). Interpretable Chirality-Aware Graph Neural Network for Quantitative Structure Activity Relationship Modeling in Drug Discovery. Proceedings of the AAAI Conference on Artificial Intelligence, 37(12), 14356–14364. Association for the Advancement of Artificial Intelligence (AAAI). Retrieved from http://dx.doi.org/10.1609/aaai.v37i12.26679
  • Lokamani, M., Kilibarda, F., Günther, F., Kelling, J., Strobel, A., Zahn, P., Juckeland, G., et al. (2023). Stretch Evolution of Electronic Coupling of the Thiophenyl Anchoring Group with Gold in Mechanically Controllable Break Junctions. The Journal of Physical Chemistry Letters, 14(24), 5709–5717. Retrieved from /brokenurl# https://doi.org/10.1021/acs.jpclett.3c00370
  • Luccioni, A. S., Akiki, C., Mitchell, M., & Jernite, Y. (2023). Stable bias: Analyzing societal representations in diffusion models. arXiv.
  • Lüdtke, S., Bartelt, C., & Stuckenschmidt, H. (2023). Outlying aspect mining via sum-product networks. In Advances in Knowledge Discovery and Data Mining, Lecture notes in computer science (pp. 27–38). Cham: Springer Nature Switzerland.
  • Luo, W., Yu, Z., Rzayev, R., Satkowski, M., Gumhold, S., McGinity, M., & Dachselt, R. (2023). PEARL: Physical Environment based Augmented Reality Lenses for In-Situ Human Movement Analysis. In CHI ’23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
  • Lutz, C., Manière, Q., & Nolte, R. (2023). Querying Circumscribed Description Logic Knowledge Bases (Extended Abstract). In O. Kutz, C. Lutz, & A. Ozaki (Eds.), Proceedings of the 36th International Workshop on Description Logics (DL 2023) co-located with the 20th International Conference on Principles of Knowledge Representation and Reasoning and the 21st International Workshop on Non-Monotonic Reasoning (KR 2023 and NMR 2023)., Rhodes, Greece, September 2-4, 2023, CEUR Workshop Proceedings (Vol. 3515). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-3515/abstract-18.pdf
  • Lutz, C., & Schulze, L. (2023). Description Logics with Abstraction and Refinement. arXiv [cs.AI]. arXiv.
  • Maack, R., Scheuermann, G., Hernandez, J., & Gillmann, C. (2023). Uncertainty-aware Visual Analytics - Scope, Oppertunities and Challenges. The Visual Computer, 39, 6345–6366.
  • Maddu, S., Sturm, D., Cheeseman, B. L., Müller, C. L., & Sbalzarini, I. F. (2023). STENCIL-NET for equation-free forecasting from data. Scientific reports, 13(1). Nature Publishing Group.
  • Mahecha, M. D., & Kraemer, G. (2023). Cautionary remarks on the Planetary Boundary visualisation. EGUsphere, 2023, 1–9. Copernicus Publications Göttingen, Germany.
  • Mailach, A., & Siegmund, N. (2023). Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights from Leaders on the Forefront. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE) (pp. 690–702). Melbourne, Australia: IEEE.
  • Malekian, N., Sainath, S., Al-Fatlawi, A., & Schroeder, M. (2023). Word-based GWAS harnesses the rich potential of genomic data for E. coli quinolone resistance. Frontiers in microbiology, 14, 1276332. Frontiers Media S.A.
  • Maletti, A., Nasz, T., Stier, K., & Ulbricht, M. (2023). Ambiguity hierarchies for weighted tree automata. Int. J. Found. Comput. Sci., 34(08), 903–921. World Scientific Pub Co Pte Ltd.
  • Marlow, B., Kuenze, G., Meiler, J., & Koehler Leman, J. (2023). Docking cholesterol to integral membrane proteins with Rosetta. PLoS Comput. Biol., 19(3), e1010947. Public Library of Science (PLoS).
  • Marré, B. E., Schramm, U., Bussmann, M., Kluge, T., Cowan, T., Widera, R., Bastrakov, S., et al. (2023). Atomic population kinetics for Particle in Cell.
  • Martinuzzi, F., Mahecha, M. D., Camps-Valls, G., Montero, D., Williams, T., & Mora, K. (2023). Learning extreme vegetation response to climate forcing: A comparison of recurrent neural network architectures. EGUsphere, 2023, 1–32. Copernicus Publications Göttingen, Germany.
  • Marton, S., Lüdtke, S., Bartelt, C., & Stuckenschmidt, H. (2023). GradTree: Learning axis-aligned decision trees with gradient descent.
  • Marx, E., & Bergner, N. (2023). Maschinelles Lernen in der Sekundarstufe I erlebbar machen: Workshop-Konzept zur Entwicklung einer intelligenten Museumsapp. In (pp. 429–430). Retrieved from https://www.uni-wuerzburg.de/aktuelles/veranstaltungen/detail/news/fachtagung-informatik-und-schule/
  • Marx, E., & Bergner, N. (2023). Einstieg in den ML-Workflow durch Entwicklung einer intelligenten Museumsapp. In INFORMATIK 2023 - Designing Futures: Zukünfte gestalten (pp. 419–423). Bonn: Gesellschaft für Informatik e.V.
  • Marx, E., & Bergner, N. (2023). Seminarkonzept zur fachlichen und fachdidaktischen Qualifizierung von Informatiklehramtsstudierenden zum Maschinellen Lernen. In 10. Fachtagung Hochschuldidaktik Informatik (HDI) 2023 (Vol. 10, pp. 65–74). Deutschland: Gesellschaft fur Informatik (GI).
  • Marx, E., Leonhardt, T., & Bergner, N. (2023). Secondary school students’ mental models and attitudes regarding artificial intelligence - A scoping review. Computers and education: artificial intelligence, 5(5), 1–13. Elsevier Science B.V.
  • Marx, E., Leonhardt, T., Bergner, N., & Witt, C. (2023). Exploring Studentstextquoteright Preinstructional Mental Models of Machine Learning: Preliminary Findings. In J.-P. Pellet & G. Parriaux (Eds.), 16th International Conference on Informatics in Schools: Situation, Evolution, and Perspectives, ISSEP 2023, Local Proceedings (pp. 233–236). Zenodo.
  • McDonald, E. F., Jones, T., Plate, L., Meiler, J., & Gulsevin, A. (2023). Benchmarking AlphaFold2 on peptide structure prediction. Structure, 31(1), 111–119.e2. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.str.2022.11.012
  • McDonald, E. F., Oliver, K. E., Schlebach, J. P., Meiler, J., & Plate, L. (2023). Benchmarking AlphaMissense Pathogenicity Predictions Against Cystic Fibrosis Variants. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2023.10.05.561147
  • Méndez, J., Satkowski, M., & Rzayev, R. (2023). How Does Explainability Look in Hybrid User Interfaces?. In (pp. 251–256). Retrieved from https://ismar23.org/
  • Menghi, N., Beylier, C., Scherf, N., Maess, B., & Doeller, C. F. (2023). Aligning and transferring knowledge across domains. In Scientific Advisory Board (SAB) Meeting.
  • Merkle, D., & Stadler, P. F. (2023). On the Realisability of Chemical Pathways. In Bioinformatics Research and Applications: 19th International Symposium, ISBRA 2023, Wroclaw, Poland, October 9--12, 2023, Proceedings (Vol. 14248, p. 409). Springer Nature.
  • Mettes, P., Atigh, M. G., Keller-Ressel, M., Gu, J., & Yeung, S. (2023). Hyperbolic deep learning in computer vision: A survey. arXiv.
  • Meumann, N., Cabanes-Creus, M., Ertelt, M., Navarro, R. G., Lucifora, J., Yuan, Q., Nien-Huber, K., et al. (2023). Adeno-associated virus serotype 2 capsid variants for improved liver-directed gene therapy. Hepatology, 77(3), 802–815. LWW.
  • Meyer, F., Hernandez, B., Pausch, R., Widera, R., Groß, D., Bastrakov, S., Huebl, A., et al. (2023). Hardware-Agnostic Interactive Exascale In Situ Visualization of Particle-In-Cell Simulations. In Proceedings of the Platform for Advanced Scientific Computing Conference (pp. 1–14).
  • Mihindukulasooriya, N., Dubey, M., Gliozzo, A., Lehmann, J., Ngomo, A.-C. N., & Usbeck, R. (2021). SeMantic AnsweR Type prediction task (SMART) at ISWC 2020 Semantic Web Challenge. arXiv.
  • Mondal, B., Westermayr, J., & Tonner-Zech, R. (2023). Machine learning for accelerated bandgap prediction in strain-engineered quaternary III–V semiconductors. The Journal of Chemical Physics, 159(10). AIP Publishing. Retrieved from http://dx.doi.org/10.1063/5.0159604
  • Montero, D., Kraemer, G., Anghelea, A., Camacho, C., Brandt, G., Camps-Valls, G., Cremer, F., et al. (2023). Data cubes for earth system research: Challenges ahead. EarthArXiv (California Digital Library).
  • Montero, D., Aybar, C., Mahecha, M. D., Martinuzzi, F., Söchting, M., & Wieneke, S. (2023). A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research. Scientific Data, 10(1), 1–20. Nature Publishing Group.
  • Montero, D., Aybar, C., Mahecha, M. D., Martinuzzi, F., Söchting, M., & Wieneke, S. (2023). A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research. Scientific Data, 10(1), 1–20. Nature Publishing Group.
  • Montero, D., Kraemer, G., Anghelea, A., Camacho, C. L. A., Brandt, G., Camps-Valls, G., Cremer, F., et al. (2023). Data cubes for earth system research: Challenges ahead. EarthArXiv.
  • Morawetz, E., Hahm, N., & Thor, A. (2023). Automatisierte Bewertung und Feedback-Generierung für grafische Modellierungen und Diagramme mit FeeDI. In 21. Fachtagung Bildungstechnologien (DELFI) (pp. 97–102). Bonn: Gesellschaft für Informatik e.V.
  • Morawetz, E., Hahm, N., & Thor, A. (2023). E-Assessment für Entity-Relationship-Diagramme mit FEEDI. Gesellschaft für Informatik e.V.
  • Mühlbauer, S., Sattler, F., Kaltenecker, C., Dorn, J., Apel, S., & Siegmund, N. (2023). Analysing the impact of workloads on modeling the performance of configurable software systems. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). Melbourne, Australia: IEEE.
  • Mühlbauer, S., Sattler, F., Kaltenecker, C., Dorn, J., Apel, S., & Siegmund, N. (2023). Analyzing the Impact of Workloads on Modeling the Performance of Configurable Software Systems. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE.
  • Mühlbauer, S., Sattler, F., Kaltenecker, C., Dorn, J., Apel, S., & Siegmund, N. (2023). Analyzing the Impact of Workloads on Modeling the performance of Configurable Software Systems (supplementary material). Zenodo.
  • Mueller, M., Franczyk, B., & Weiland, J. (2023). Entscheidungsunterstützungssysteme in der Produktentwicklung von Unternehmen. GI. Retrieved from https://dl.gi.de/handle/20.500.12116/42109
  • Mukherjee, S., & Suppakitpaisarn, V. (2023). Robustness for Spectral Clustering of General Graphs under Local Differential Privacy. Retrieved from https://arxiv.org/abs/2309.06867
  • Mushunuri, R. V., Choschzick, M., Braumann, U.-D., & Hess, J. (2023). An ensemble approach for histopathological classification of vulvar cancer. In J. E. Tomaszewski & A. D. Ward (Eds.), Medical Imaging 2023: Digital and Computational Pathology (p. 40). San Diego, United States: SPIE.
  • Natarajan, Y., Wadhwa, G., Ranganathan, P. A., & Natarajan, K. (2023). Earthquake damage prediction and rapid assessment of building damage using deep learning. In 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS). Bangalore, India: IEEE.
  • Natarajan, Y., Wadhwa, G., Ranganathan, P. A., & Natarajan, K. (2023). Earthquake damage prediction and rapid assessment of building damage using machine learning. In 2023 International Conference for Advancement in Technology (ICONAT). Goa, India: IEEE.
  • Natarajan, Y., Wadhwa, G., Saravanan, L., & Natarajan, M. (2023). Enhanced building prediction for smart city surveillance. In 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS). Bangalore, India: IEEE.
  • Natarajan, Y., Wadhwa, G., Sri Preethaa, K. R., & Paul, A. (2023). Forecasting carbon dioxide emissions of light-duty vehicles with different machine learning algorithms. Electronics (Basel), 12(10), 2288. MDPI AG.
  • Neumann, J., & Hoffmann, L. (2023). 4.6 Medienkompetenz von Lehrkräften in Bildungseinrichtungen des Handels. Selbstgesteuertes Lernen in der beruflichen Weiterbildung, 319.
  • Novitasari, M., Quaas, J., & Rodrigues, M. (2023). ALAS: Active Learning for Autoconversion Rates Prediction from Satellite Data. In NeurIPS 2023 AI for Science Workshop. Retrieved from https://openreview.net/forum?id=F7hIk2Bw6X
  • Novitasari, M. C., Quaas, J., & Rodrigues, M. (2023). Unleashing the Autoconversion Rates Forecasting: Evidential Regression from Satellite Data. In NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning. Retrieved from https://www.climatechange.ai/papers/neurips2023/44
  • Nsonga, B., & Scheuermann, G. (2023). Visualizing Similarity of Pathline Dynamics in 2D Flow Fields. In 2023 IEEE Visualization and Visual Analytics (VIS) (pp. 71–75). IEEE.
  • Nsonga, B., Ventosa-Molina, J., Koschichow, D., Fröhlich, J., Gumhold, S., & Scheuermann, G. (2023). Visual analysis of the impact of periodic wakes on the pressure side of a turbine blade. Journal of Visualization, 26(5), 1115–1137. Retrieved from https://doi.org/10.1007/s12650-023-00930-6
  • Obraczka, D., Saeedi, A., Christen, V., & Rahm, E. (2023). Big data integration for industry 4.0. In Digital Transformation (pp. 247–268). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Odekerken, D., Borg, A., & Berthold, M. (2023). Demonstrating PyArg 2.0. In AI$^3$@ AI* IA.
  • Odekerken, D., Borg, A., & Berthold, M. (2023). Accessible Algorithms for Applied Argumentation. In O. Cocarascu, S. Doutre, J.-G. Mailly, & A. Rago (Eds.), Proceedings of the First International Workshop on Argumentation and Applications co-located with 20th International Conference on Principles of Knowledge Representation and Reasoning (KR 2023), Rhodes, Greece, September 2-8, 2023, CEUR Workshop Proceedings (Vol. 3472, pp. 92–98). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-3472/short3.pdf
  • Oechsler, D. (2023). Lévy Langevin Monte Carlo. Statistics and Computing, 34 (2024)(1). Springer, Dordrecht [u. a.].
  • Oestereich, T., Tonner‐Zech, R., & Westermayr, J. (2023). Decoding energy decomposition analysis: Machine‐learned Insights on the impact of the density functional on the bonding analysis. Journal of Computational Chemistry, 45(7), 368–376. Wiley. Retrieved from http://dx.doi.org/10.1002/jcc.27244
  • Okhrin, O., & Ristig, A. (2023). Penalized estimation of hierarchical Archimedean copula. Journal of Multivariate Analysis, 201. Academic Press Inc.
  • Okhrin, O., Rockinger, M., & Schmid, M. (2023). Distributional properties of continuous time processes: from CIR to bates. AStA Advances in Statistical Analysis, 107(3), 397–419. Retrieved from https://ideas.repec.org/a/spr/alstar/v107y2023i3d10.1007_s10182-022-00459-3.html
  • Okwei, E., Smith, S. T., Bender, B. J., Allison, B., Ganguly, S., Geanes, A., Zhang, X., et al. (2023). Rosetta’s predictive ability for low-affinity ligand binding in fragment-based drug discovery. Biochemistry, 62(3), 700–709.
  • Oliveros, D., Roldán, Érika, Soberón, P., & Torres, A. J. (2023). Tverberg Partition Graphs.
  • Oyshi, M. T., Vogt, S., & Gumhold, S. (2023). TmoTA: Simple, Highly Responsive Tool for Multiple Object Tracking Annotation. In A. Schmidt, K. Väänänen, E. Goyal, P. O. Kristensson, A. Peters, S. Mueller, J. R. Williamson, et al. (Eds.), CHI 2023 - Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI: Conference on Human Factors in Computing Systems. Association for Computing Machinery. Retrieved from https://chi2023.acm.org/
  • Pahlke, J., & Sbalzarini, I. F. (2023). A Unifying Mathematical Definition of Particle Methods. IEEE open journal of the computer society : an open access publication of the IEEE Computer Society, 4, 97–108. Institute of Electrical and Electronics Engineers Inc.
  • Pahlke, J., & Sbalzarini, I. F. (2023). Computational Power of Particle Methods. CoRR, abs/2304.10286.
  • Pellet, J.-P., & Parriaux, G. (2023). 16th international conference on informatics in schools: Situation, evolution, and perspectives, ISSEP 2023, local proceedings. Zenodo.
  • Peng, K., Kaltenecker, C., Siegmund, N., Apel, S., & Menzies, T. (2023). VEER: enhancing the interpretability of model-based optimizations. Empirical Software Engineering, 28(3), 61. Springer.
  • Pennitz, P., Friedrich, V., Wyler, E., Adler, J., Postmus, D., Andreotti, S., Teixeira-Alves, L., et al. (2023). Interspecies analysis to dissect cellular transcriptomic signatures of humans and hamsters in COVID-19. In Pneumologie (Vol. 77).
  • Perez, S., Maddu, S., Sbalzarini, I. F., & Poncet, P. (2023). Adaptive weighting of Bayesian physics informed neural networks for multitask and multiscale forward and inverse problems. Journal of computational physics, 491. Academic Press Inc.
  • Petersohn, M., Schöbel, K., & Thor, A. (2023). Kopplung von Jupyter Notebooks mit externen E-Assessment-Systemen am Beispiel des Data Management Testers. In 21. Fachtagung Bildungstechnologien (DELFI) (pp. 85–90). Bonn: Gesellschaft für Informatik e.V.
  • Petersohn, M., Schöbel, K., & Thor, A. (2023). DMT-Magic: Interaktives E-Assessment in der Datenbank-Lehre mit Jupyter Notebooks. In 21. Fachtagung Bildungstechnologien (DELFI) (pp. 263–264). Bonn: Gesellschaft für Informatik e.V.
  • Piktus, A., Ogundepo, O., Akiki, C., Oladipo, A., Zhang, X., Schoelkopf, H., Biderman, S., et al. (2023). GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training Data Exploration. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations) (pp. 588–598). Association for Computational Linguistics. Retrieved from http://dx.doi.org/10.18653/v1/2023.acl-demo.57
  • Platow, B. (2023). Menschliche Identitäten und künstliche Intelligenz.
  • Prager, R. P., Dietrich, K., Schneider, L., Schäpermeier, L., Bischl, B., Kerschke, P., Trautmann, H., et al. (2023). Neural Networks as Black-Box Benchmark Functions Optimized for Exploratory Landscape Features. In FOGA 2023 (pp. 129–139). United States: Association for Computing Machinery. Retrieved from https://hpi.de/foga2023/
  • Rade, M., Böhlen, S., Neuhaus, V., Löffler, D., Blumert, C., Merz, M., Köhl, U., et al. (2023). A time-resolved meta-analysis of consensus gene expression profiles during human T-cell activation. Genome Biology, 24(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1186/s13059-023-03120-7
  • Raith, F., Nsonga, B., Scheuermann, G., & Heine, C. (2023). Fast Fiber Line Extraction for 2D Bivariate Scalar Fields. In 2023 IEEE Visualization and Visual Analytics (VIS) (pp. 156–160).
  • Refsgaard, J. C., Mai, J., Hrachowitz, M., Jain, S. K., & Stisen, S. (2023, September). Towards more credible models in catchment hydrology to enhance hydrological process understanding: Preface. Authorea, Inc.
  • Reimer, J. H., Schmidt, S., Fröbe, M., Gienapp, L., Scells, H., Stein, B., Hagen, M., et al. (2023). The Archive Query Log: Mining millions of search result pages of hundreds of search engines from 25 years of web archives. arXiv.
  • Reiter, N.-D., Gerhardus, A., Wahl, J., & Runge, J. (2023). Causal Inference on Process Graphs, Part I: The Structural Equation Process Representation. In . Retrieved from https://api.semanticscholar.org/CorpusID:258823305
  • Renz, A. (2023). AI in Education: Educational Technology and AI. In I. Knappertsbusch & K. Gondlach (Eds.), Work and AI 2030: Challenges and Strategies for Tomorrow’s Work (pp. 353–360). Wiesbaden: Springer Fachmedien Wiesbaden. Retrieved from https://doi.org/10.1007/978-3-658-40232-7_39
  • Richards, J., Huser, R., Bevacqua, E., & Zscheischler, J. (2023). Insights into the Drivers and Spatiotemporal Trends of Extreme Mediterranean Wildfires with Statistical Deep Learning. Artificial Intelligence for the Earth Systems, 2(4). American Meteorological Society. Retrieved from http://dx.doi.org/10.1175/AIES-D-22-0095.1
  • Riedel, J., Stark, L., & Neumann, J. (2023). Application of ESCO to Document Lifelong Learning-Case Studies in German Continuing Education Institutions. Ubiquity Press.
  • Rink, K., Graebling, N., Bilke, L., Buchwald, J., Fischer, T., Lehmann, C., Meisel, T., et al. (2023). Virtual reality and computational efficiency. In SpringerBriefs in Earth System Sciences (pp. 77–89). Cham: Springer Nature Switzerland.
  • Roche, K. E., Bjork, J. R., Dasari, M. R., Grieneisen, L., Jansen, D., Gould, T. J., Gesquiere, L. R., et al. (2023). Universal gut microbial relationships in the gut microbiome of wild baboons. Elife, 12. eLife Sciences Publications, Ltd.
  • Röhling, A. (2023). „Marg bar Khamenei``. Verfassungsblog: On Matters Constitutional. Fachinformationsdienst für internationale und interdisziplinäre Rechtsforschung. Retrieved from https://intr2dok.vifa-recht.de/receive/mir_mods_00015020
  • Röhling, A., & Weil, J. (2023). Marg bar Khamenei. Verfassungsblog. Verfassungsblog.
  • Rohde, F., Franke, M., Christen, V., & Rahm, E. (2023). Value-specific weighting for record-level encodings in privacy-preserving record linkage. In . Gesellschaft für Informatik e.V.
  • Rost, C., Gomez, K., Christen, P., & Rahm, E. (2023). Evolution of degree metrics in large temporal graphs. In . Gesellschaft für Informatik e.V.
  • Russig, B., Grab, D., Dachselt, R., & Gumhold, S. (2023). On-tube attribute visualization for multivariate trajectory data. IEEE Trans. Vis. Comput. Graph., 29(1), 1288–1298. Institute of Electrical and Electronics Engineers (IEEE).
  • Sadier, A., Anthwal, N., Krause, A. L., Dessalles, R., Lake, M., Bentolila, L. A., Haase, R., et al. (2023). Bat teeth illuminate the diversification of mammalian tooth classes. Nature communications, 14(1), 4687. Nature Publishing Group UK London.
  • Sadiri Javadi, V., Potthast, M., & Flek, L. (2023). OpinionConv: Conversational Product Search with Grounded Opinions. In Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue (pp. 66–76). Association for Computational Linguistics. Retrieved from http://dx.doi.org/10.18653/v1/2023.sigdial-1.6
  • Sala, D., Batebi, H., Ledwitch, K., Hildebrand, P. W., & Meiler, J. (2023). Targeting in silico GPCR conformations with ultra-large library screening for hit discovery. Trends Pharmacol. Sci., 44(3), 150–161. Elsevier BV.
  • Sala, D., Engelberger, F., Mchaourab, H., & Meiler, J. (2023). Modeling conformational states of proteins with AlphaFold. Current Opinion in Structural Biology, 81, 102645. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.sbi.2023.102645
  • Sala, D., Hildebrand, P. W., & Meiler, J. (2023). Biasing AlphaFold2 to predict GPCRs and kinases with user-defined functional or structural properties. Frontiers in Molecular Biosciences, 10. Frontiers Media SA. Retrieved from http://dx.doi.org/10.3389/fmolb.2023.1121962
  • Samadi, S., Joharinad, P., & Rezaei, B. (2023). Characteristics of Randers Metrics of Isotropic Projective Ricci Curvature. SSRN, (4565616).
  • Sanabria, M., Hirsch, J., & Poetsch, A. R. (2023, July). The human genome’s vocabulary as proposed by the DNA language model GROVER. bioRxiv.
  • Santiago Arguello, A., Montellano-Ballesteros, J. J., & Stadler, P. F. (2023). Hamiltonicity in power graphs of a class of abelian groups. Journal of Algebraic Combinatorics, 57(1), 313–328. Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1007/s10801-022-01172-9
  • Saraiva, B. M., Cunha, I. M., Brito, A. D., Follain, G., Portela, R., Haase, R., Pereira, P. M., et al. (2023). NanoPyx: super-fast bioimage analysis powered by adaptive machine learning. bioRxiv, 2023–08. Cold Spring Harbor Laboratory.
  • Satkowski, M., & Méndez, J. (2023). Fantastic Hybrid User Interfaces and How to Define Them. In (pp. 247–250). Retrieved from https://ismar23.org/
  • Sattler, F., Böhm, S., Schubert, P., Siegmund, N., & Apel, S. (2023). SEAL: Integrating Program Analysis and Repository Mining. ACM Transactions on Software Engineering and Methodology, 32.
  • Sattler, F., Böhm, S., Schubert, P. D., Siegmund, N., & Apel, S. (2023). SEAL: Integrating program analysis and repository mining. ACM Trans. Softw. Eng. Methodol., 32(5), 1–34. Association for Computing Machinery (ACM).
  • Scells, H., & Potthast, M. (2023). pybool_ir: A Toolkit for Domain-Specific Search Experiments. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. Taipei Taiwan: ACM.
  • Scells, H., Schlatt, F., & Potthast, M. (2023). Smooth operators for effective systematic review queries. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. Taipei Taiwan: ACM.
  • Schäfer, R. A., Rabsch, D., Scholz, G. E., Stadler, P. F., Hess, W. R., Backofen, R., Fallmann, J., et al. (2023). RNA interaction format: a general data format for RNA interactions. Bioinformatics, 39(11), btad665. Oxford University Press.
  • Schäpermeier, L., Kerschke, P., Grimme, C., & Trautmann, H. (2023). Peak-A-Boo! Generating Multi-objective Multiple Peaks Benchmark Problems with Precise Pareto Sets. In M. Emmerich, A. Deutz, H. Wang, A. V. Kononova, B. Naujoks, K. Li, K. Miettinen, et al. (Eds.), Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science (pp. 291–304). Germany: Springer.
  • Schake, P., Dishnica, K., Kaiser, F., Leberecht, C., Haupt, V. J., & Schroeder, M. (2023). An interaction-based drug discovery screen explains known SARS-CoV-2 inhibitors and predicts new compound scaffolds. Scientific Reports, 13(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1038/s41598-023-35671-x
  • Schaller, D., Geiß, M., Hellmuth, M., & Stadler, P. F. (2023). Best Match Graphs With Binary Trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20(3), 1679–1690. Institute of Electrical and Electronics Engineers (IEEE). Retrieved from http://dx.doi.org/10.1109/TCBB.2022.3143870
  • Schaller, D., Hartmann, T., Lafond, M., Stadler, P. F., Wieseke, N., & Hellmuth, M. (2023). Relative timing information and orthology in evolutionary scenarios. Algorithms for Molecular Biology, 18(1), 16. Retrieved from https://doi.org/10.1186/s13015-023-00240-4
  • Schaller, D., Hellmuth, M., & Stadler, P. F. (2023). Orientation of Fitch Graphs and Reconciliation-Free Inference of Horizontal Gene Transfer in Gene Trees. SIAM Journal on Discrete Mathematics, 37(3), 2172–2207. Society for Industrial & Applied Mathematics (SIAM). Retrieved from http://dx.doi.org/10.1137/22M150736X
  • Scheel, J., Hoch, M., Wolfien, M., & Gupta, S. (2023). NaviCenta - The disease map for placental research. Placenta, 143, 12–15. Elsevier BV.
  • Schieck, M., Krajsic, P., Loos, F., Hussein, A., Franczyk, B., Kozierkiewicz, A., & Pietranik, M. (2023). Comparison of deep learning methods for grapevine growth stage recognition. Computers and Electronics in Agriculture, 211, 107944. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.compag.2023.107944
  • Schiedermair, S. (Ed.). (2023). Datenschutzdurchführungsgesetz Sachsen. Nomos Handkommentar, Nomos Handkommentar (1. Auflage.). Nomos.
  • Schiedermair, S., & Weil, J. (2023). Zwischen Effizienz und Kontrollverlust: Der Einsatz von Künstlicher Intelligenz durch die Verwaltung im Spiegel des Rechts.
  • Schimmelpfennig, C., Rade, M., Füssel, S., Löffler, D., Blumert, C., Bertram, C., Borkowetz, A., et al. (2023). Characterization and evaluation of gene fusions as a measure of genetic instability and disease prognosis in prostate cancer. BMC Cancer, 23(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1186/s12885-023-11019-6
  • Schimmler, S., Wentzel, B., Bleier, A., Dietze, S., Karmakar, S., Mutschke, P., Kraft, A., et al. (2023). NFDI4DS Infrastructure and Services. Gesellschaft für Informatik e.V. Retrieved from https://dl.gi.de/handle/20.500.12116/43023
  • Schimunek, J., Seidl, P., Elez, K., Hempel, T., Le, T., Noé, F., Olsson, S., et al. (2023). A community effort in SARS‐CoV‐2 drug discovery. Molecular Informatics, 43(1). Wiley. Retrieved from http://dx.doi.org/10.1002/minf.202300262
  • Schmalfuß-Schwarz, J., Loitsch, C., & Weber, G. (2023). Usage of Self-Motivating Achievements to Collect Accessibility Information of Indoor Environments. In M. Antona & C. Stephanidis (Eds.), Universal Access in Human-Computer Interaction - 17th International Conference, UAHCI 2023, Held as Part of the 25th HCI International Conference, HCII 2023, Proceedings (pp. 477–488). Switzerland: Springer Nature Switzerland, Dortrecht [u. a.].
  • Schmidt, J. R., Haupt, J., Riemschneider, S., Kämpf, C., Löffler, D., Blumert, C., Reiche, K., et al. (2023). Transcriptomic signatures reveal a shift towards an anti-inflammatory gene expression profile but also the induction of type I and type II interferon signaling networks through aryl hydrocarbon receptor activation in murine macrophages. Frontiers in Immunology, 14. Frontiers Media SA. Retrieved from http://dx.doi.org/10.3389/fimmu.2023.1156493
  • Schmidt, M., Kircheis, W., Simons, A., Potthast, M., & Stein, B. (2023). A diachronic perspective on citation latency in Wikipedia articles on CRISPR/Cas-9: an exploratory case study. Scientometrics, 128(6), 3649–3673.
  • Schneider, M., Christen, P., Rahm, E., Schneider, J., & Löffelmann, L. (2023). Tuning the Utility-Privacy Trade-Off in Trajectory Data. In EDBT (pp. 839–842).
  • Schneider, M., Schneider, J., Löffelmann, L., Christen, P., & Rahm, E. (2023). Tuning the Utility-Privacy Trade-Off in Trajectory Data. In 26th International Conference on Extending Database Technology (EDBT).
  • Schönberger, L., Marx, E., & Bergner, N. (2023). Workshop: Künstliche Intelligenz im Informatikunterricht - Praxisperspektiven im Gespräch.
  • Scholler, J., Jonsson, J., Jordá-Siquier, T., Gantar, I., Batti, L., Cheeseman, B. L., Pagès, S., et al. (2023, January). Efficient image analysis for large-scale next generation histopathology using pAPRica. bioRxiv.
  • Schröder, C., Müller, L., Niekler, A., & Potthast, M. (2023). Small-Text: Active Learning for Text Classification in Python. In D. Croce & L. Soldaini (Eds.), Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations (pp. 84–95). Dubrovnik, Croatia: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2023.eacl-demo.11
  • Schüler, T., Mennicke, S., & Lochau, M. (2023). Abstract domains for database manipulating processes.
  • Schulze, L. J., Veettil, S. K. T., & Sbalzarini, I. F. (2023). A high-order fully Lagrangian particle level-set method for dynamic surfaces. CoRR, abs/2306.07986.
  • Schuster, P., & Stadler, P. F. (2023). Virus evolution on fitness landscapes. In Viral Fitness and Evolution: Population Dynamics and Adaptive Mechanisms (pp. 1–94). Springer.
  • Schwarke, C. (2023). Kuenstliche Intelligenz und die Konstruktion von Verantwortung.
  • Schwarke, C. (2023). Paul Tillich und die Technik. In Paul Tillich in Dresden (pp. 197–210). De Gruyter.
  • Schwarke, C. (2023). Art. Technikethik.
  • Seemann, C. R., Moulton, V., Stadler, P. F., & Hellmuth, M. (2023). Planar median graphs and cubesquare-graphs. Discrete Applied Mathematics, 331, 38–58. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.dam.2023.01.022
  • Shanavas, A. V., Changat, M., Hellmuth, M., & Stadler, P. F. (2023). Unique Least Common Ancestors and Clusters in Directed Acyclic Graphs. arXiv preprint arXiv:2309.13634.
  • Simon, S., Kolyada, N., Akiki, C., Potthast, M., Stein, B., & Siegmund, N. (2023). Exploring hyperparameter usage and tuning in machine learning research. In 2023 IEEE/ACM 2nd International Conference on AI Engineering -- Software Engineering for AI (CAIN). Melbourne, Australia: IEEE.
  • Simon, S., Ruckel, N., & Siegmund, N. (2023). CfgNet: A Framework for Tracking Equality-Based Configuration Dependencies Across a Software Project. IEEE Transactions on Software Engineering, 49(8), 3955–3971. IEEE.
  • Singh, A., Kraatz, L., Incardona, P., & Sbalzarini, I. F. (2023). A Distributed Algebra System for Time Integration on Parallel Computers. CoRR, abs/2309.05331.
  • Singh, A., Sbalzarini, I. F., & Obeidat, A. (2023). Entropically damped artificial compressibility for the discretization corrected particle strength exchange method in incompressible fluid mechanics. Computers & Fluids, 267, 106074. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.compfluid.2023.106074
  • Singh, A., Suhrcke, P. H., Incardona, P., & Sbalzarini, I. F. (2023). A numerical solver for active hydrodynamics in three dimensions and its application to active turbulence. Physics of fluids, 35(10). American Institute of Physics.
  • Singh, A., Vagne, Q., Jülicher, F., & Sbalzarini, I. F. (2023). Spontaneous flow instabilities of active polar fluids in three dimensions. Physical Review Research, 5(2). American Physical Society, College Park.
  • Skulimowski, A. M., & Köhler, T. (2023). A future-oriented approach to the selection of artificial intelligence technologies for knowledge platforms. Journal of the Association for Information Science and Technology, 74(8), 905–922. Wiley Online Library.
  • Sodoge, J., Kuhlicke, C., Mahecha, M. D., & de Brito, M. M. (2024). Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany. Natural Hazards and Earth System Sciences, 24(5), 1757–1777. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/nhess-24-1757-2024
  • Söchting, M., Mahecha, M. D., Montero, D., & Scheuermann, G. (2023). Lexcube: Interactive visualization of large earth system data cubes. IEEE Computer Graphics and Applications. IEEE.
  • Soltwedel, J., Suckert, T., Beyreuther, E., Schneider, M., Boucsein, M., Bodenstein, E., Nexhipi, S., et al. (2023). Slice2Volume: Fusion of multimodal medical imaging and light microscopy data of irradiation-injured brain tissue in 3D. Radiotherapy and Oncology, 182, 109591. Elsevier.
  • Soltwedel, J., Suckert, T., Beyreuther, E., Schneider, M., Boucsein, M., Bodenstein, E., Nexhipi, S., et al. (2023). Slice2Volume: Fusion of multimodal medical imaging and light microscopy data of irradiation-injured brain tissue in 3D. Radiotherapy and Oncology, 182, 109591. Elsevier.
  • Song, B., Xu, C., Amouzouvi, K., Wang, M., Lehmann, J., & Vahdati, S. (2023). Distinct Geometrical Representations for Temporal and Relational Structures in Knowledge Graphs. In D. Koutra, C. Plant, M. G. Rodriguez, E. Baralis, & F. Bonchi (Eds.), Machine Learning and Knowledge Discovery in Databases: Research Track - European Conference, ECML PKDD 2023, Turin, Italy, September 18-22, 2023, Proceedings, Part III, Lecture Notes in Computer Science (Vol. 14171, pp. 601–616). Springer. Retrieved from https://doi.org/10.1007/978-3-031-43418-1_36
  • Soulios, K., Scheibe, P., Bernt, M., Hackermüller, J., & Schor, J. (2023). deepFPlearn+: enhancing toxicity prediction across the chemical universe using graph neural networks. Bioinformatics, 39(12), btad713. Oxford University Press.
  • Sri Preethaa, K. R., Muthuramalingam, A., Natarajan, Y., Wadhwa, G., & Ali, A. A. Y. (2023). A comprehensive review on machine learning techniques for forecasting wind flow pattern. Sustainability, 15(17), 12914. MDPI AG.
  • Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid, A., Fisch, A., Brown, A. R., et al. (2023). Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models. Retrieved from https://arxiv.org/abs/2206.04615
  • Stamatatos, E., Kredens, K., Pezik, P., Heini, A., Bevendorff, J., Stein, B., & Potthast, M. (2023). Overview of the Authorship Verification Task at PAN 2023. In M. Aliannejadi, G. Faggioli, N. Ferro, & M. Vlachos (Eds.), Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2023), CEUR Workshop Proceedings (Vol. 3497, pp. 2476–2491). Retrieved from https://ceur-ws.org/Vol-3497/paper-199.pdf
  • Stark, W. G., Westermayr, J., Douglas-Gallardo, O. A., Gardner, J., Habershon, S., & Maurer, R. J. (2023). Machine Learning Interatomic Potentials for Reactive Hydrogen Dynamics at Metal Surfaces Based on Iterative Refinement of Reaction Probabilities. The Journal of Physical Chemistry C, 127(50), 24168–24182. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.1021/acs.jpcc.3c06648
  • Stein, B., Simons, A., Potthast, M., Hagen, S., & Wörner, K. (2023). Protokoll 24. In ChatGPT und andere »Quatschmaschinen« (pp. 170–191). transcript Verlag. Retrieved from http://dx.doi.org/10.14361/9783839469088-025
  • Stein, D., Di Gregorio, S., & Andres, B. (2023). Partial optimality in cubic correlation clustering. Proceedings of the 40th International Conference on Machine Learning, PMLR, 202, 32598–32617. arXiv. Retrieved from https://proceedings.mlr.press/v202/stein23a.html
  • Steinacker, M., Kheifetz, Y., & Scholz, M. (2023). Individual modelling of haematotoxicity with NARX neural networks: A knowledge transfer approach. Heliyon, 9(7), e17890. Elsevier BV.
  • Steiniger, K., Widera, R., Bastrakov, S., Bussmann, M., Chandrasekaran, S., Hernandez, B., Holsapple, K., et al. (2023). EZ: An efficient, charge conserving current deposition algorithm for electromagnetic particle-in-cell simulations. Computer Physics Communications, 291, 108849. Retrieved from https://www.sciencedirect.com/science/article/pii/S0010465523001947
  • Striegl, J., Loitsch, C., & Weber, G. (2023). Voice Assistant-Based Cognitive Behavioral Therapy for Test Anxiety in Students. In M. Kurosu & A. Hashizume (Eds.), Human-Computer Interaction - Thematic Area, HCI 2023, Held as Part of the 25th HCI International Conference, HCII 2023, Proceedings, Lecture Notes in Computer Science (pp. 396–406). Switzerland: Springer Nature Switzerland, Dortrecht [u. a.].
  • Studart, T. M. C., Martins, E. S. P. R., Ayrimoraes, S. R., Pessoa, C. A. P., Rolim, L. Z. R., Junior, L. M. A., Silva, S. M. O., et al. (2023). Integrated proactive drought management in hydrosystems and cities: building a nine-step participatory planning methodology. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 115(3), 2179–2204. Springer.
  • Sturm, D., Maddu, S., & Sbalzarini, I. F. (2023). Learning locally dominant force balances in active particle systems. CoRR, abs/2307.14970.
  • Susik, M., & Sbalzarini, I. F. (2023). Variational inference accelerates accurate DNA mixture deconvolution. Forensic Science International: Genetics, 65, 102890. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.fsigen.2023.102890
  • Susik, M., & Sbalzarini, I. F. (2023). Analysis of the Hamiltonian Monte Carlo genotyping algorithm on PROVEDIt mixtures including a novel precision benchmark. Forensic Science International: Genetics, 64, 102840. Retrieved from https://www.sciencedirect.com/science/article/pii/S1872497323000157
  • Sweet, L.- belle, Müller, C., Anand, M., & Zscheischler, J. (2023). Cross-Validation Strategy Impacts the Performance and Interpretation of Machine Learning Models. Artificial Intelligence for the Earth Systems, 2(4). American Meteorological Society. Retrieved from http://dx.doi.org/10.1175/AIES-D-23-0026.1
  • Syed, S., Hakimi, A., Al-Khatib, K., & Potthast, M. (2023). Citance-Contextualized Summarization of Scientific Papers. In H. Bouamor, J. Pino, & K. Bali (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2023 (pp. 8551–8568). Singapore: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2023.findings-emnlp.573
  • Syed, S., Schwabe, D., Khatib, K., & Potthast, M. (2023). Indicative Summarization of Long Discussions. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (pp. 2752–2788). Association for Computational Linguistics. Retrieved from http://dx.doi.org/10.18653/v1/2023.emnlp-main.166
  • Syed, S., Ziegenbein, T., Heinisch, P., Wachsmuth, H., & Potthast, M. (2023). Frame-oriented Summarization of Argumentative Discussions. In Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue (pp. 114–129). Association for Computational Linguistics. Retrieved from http://dx.doi.org/10.18653/v1/2023.sigdial-1.10
  • Ten Cate, B., Dalmau, V., Funk, M., & Lutz, C. (2023). Extremal fitting problems for conjunctive queries. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. Seattle WA USA: ACM.
  • ten Cate, B., Funk, M., Jung, J. C., & Lutz, C. (2023). Fitting Algorithms for Conjunctive Queries. SIGMOD Rec., 52(4), 6–18. Retrieved from https://doi.org/10.1145/3641832.3641834
  • ten Cate, B., Funk, M., Jung, J. C., & Lutz, C. (2023). SAT-Based PAC Learning of Description Logic Concepts. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China (pp. 3347–3355). ijcai.org. Retrieved from https://doi.org/10.24963/ijcai.2023/373
  • Tiepmar, J. (2015). Release of the MySQL based implementation of the CTS protocol. In P. Ba≈Ñski, H. Biber, E. Breiteneder, M. Kupietz, H. Lüngen, & A. Witt (Eds.), Proceedings of the 3rd Workshop on Challenges in the Management of Large Corpora (CMLC-3), Lancaster, 20 July 2015, Proceedings of the 3rd Workshop on Challenges in the Management of Large Corpora (CMLC-3), Lancaster, 20 July 2015 (pp. 35–43). Mannheim: Institut für Deutsche Sprache. Retrieved from https://nbn-resolving.org/urn:nbn:de:bsz:mh39-38374
  • Tkachenko, M., Chalopin, C., Jansen-Winkeln, B., Neumuth, T., Gockel, I., & Maktabi, M. (2023). Impact of pre- and post-processing steps for supervised classification of colorectal cancer in hyperspectral images. Cancers (Basel), 15(7).
  • Toni, F., Potyka, N., Ulbricht, M., & Totis, P. (2023). Understanding ProbLog as probabilistic argumentation. Electron. Proc. Theor. Comput. Sci., 385, 183–189. Open Publishing Association.
  • Torge, S., Politov, A., Lehmann, C., Saffar, B., & Tao, Z. (2023). Named Entity Recognition for Low-Resource Languages - Profiting from Language Families. In EACL 2023 - 9th Workshop on Slavic Natural Language Processing, Proceedings of the SlavicNLP 2023, Proceedings of the Workshop (SlavicNLP) (pp. 1–10). The Association for Computational Linguistics. Retrieved from https://bsnlp.cs.helsinki.fi/
  • Turhan, A.-Y. (2023). Brushing-up DLs to Cope with Imperfect Data (Abstract of Joint DL+NMR Invited Talk). In O. Kutz, C. Lutz, & A. Ozaki (Eds.), Proceedings of the 36th International Workshop on Description Logics (DL 2023) co-located with the 20th International Conference on Principles of Knowledge Representation and Reasoning and the 21st International Workshop on Non-Monotonic Reasoning (KR 2023 and NMR 2023)., Rhodes, Greece, September 2-4, 2023, CEUR Workshop Proceedings (Vol. 3515). CEUR-WS.org.
  • Uhrich, B., Hlubek, N., Häntschel, T., & Rahm, E. (2023). Using differential equation inspired machine learning for valve faults prediction. In 2023 IEEE 21st International Conference on Industrial Informatics (INDIN). Lemgo, Germany: IEEE.
  • Uhrig, P., Payne, E., Pavlova, I., Burenko, I., Dykes, N., Baltazani, M., Burrows, E., et al. (2023). Studying time conceptualisation via speech, prosody, and hand gesture: interweaving manual and computational methods of analysis. In Gesture and Speech in Interaction Conference (GeSpIn 2023).
  • Ulbricht, M., Potyka, N., Rapberger, A., & Toni, F. (2023). Non-flat ABA is an Instance of Bipolar Argumentation. arXiv. Retrieved from https://arxiv.org/abs/2305.12453
  • Umlauft, J., Johnson, C. W., Roux, P., Trugman, D. T., Lecointre, A., Walpersdorf, A., Nanni, U., et al. (2023). Mapping glacier basal sliding applying machine learning. J. Geophys. Res. Earth Surf., 128(11). American Geophysical Union (AGU).
  • Umlauft, J., Johnson, C. W., Roux, P., Trugman, D. T., Lecointre, A., Walpersdorf, A., Nanni, U., et al. (2023). Mapping glacier basal sliding with machine learning. EarthArXiv.
  • Umlauft, J., Johnson, C. W., Roux, P., Trugman, D. T., Lecointre, A., Walpersdorf, A., Nanni, U., et al. (2023). Mapping glacier basal sliding applying machine learning. Journal of Geophysical Research: Earth Surface, 128(11), e2023JF007280.
  • Leipzig, U., Uhrich, B., Lange, S., Leipzig, U., Carnot, M. L., Leipzig, U., Schäfer, M., et al. (2023). Predictive Manufacturing -- Ein Intelligentes Überwachungssystem zur Erkennung von Anomalien im 3D-Druck. Ind. 4 0 Manag., 2023(1), 27–31. GITO mbH Verlag.
  • Vahdati, S., Nagaraj, D. B., Bryan, M., Moazemi, S., Gründer-Fahrer, S., & Martin, M. (2023). Utilizing transformers on OCT imagery and metadata for treatment response prediction in macular edema patients. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 3–15). Cham: Springer Nature Switzerland.
  • Vargis, T. R., & Ghiasvand, S. (2022). A Light-weight and Unsupervised Method for Near Real-time Behavioral Analysis using Operational Data Measurement. In The International Conference for High Performance Computing, Networking, Storage, and Analysis. Dallas, Texas, USA. Retrieved from https://sc22.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost131.html
  • Vasudevan, P., Wolfien, M., Lemcke, H., Lang, C. I., Skorska, A., Gaebel, R., Galow, A.-M., et al. (2023). CCR2 macrophage response determines the functional outcome following cardiomyocyte transplantation. Genome medicine, 15(1). BioMed Central, London.
  • Vogel, F., & Lange, L. (2023). Privacy-Preserving Sentiment Analysis on Twitter. In SKILL 2023. Gesellschaft für Informatik e.V.
  • Vogginger, B., Kelber, F., Jobst, M., Yan, Y., Gerhards, P., Weih, M., & Akl, M. (2023). py-spinnaker2. Zenodo.
  • Volpe, G., W�hlby, C., Tian, L., Hecht, M., Yakimovich, A., Monakhova, K., Waller, L., et al. (2023). Roadmap on Deep Learning for Microscopy. Retrieved from https://arxiv.org/abs/2303.03793
  • Volz, V., Naujoks, B., Kerschke, P., & Tušar, T. (2023). Tools for Landscape Analysis of Optimisation Problems in Procedural Content Generation for Games. Applied Soft Computing, 136, 110121. Retrieved from https://www.sciencedirect.com/science/article/pii/S1568494623001394
funded by:
Gefördert vom Bundesministerium für Bildung und Forschung.
Gefördert vom Freistaat Sachsen.