JavaScript is required to use this site. Please enable JavaScript in your browser settings.

2024

  • Adams, Z. P., & Mukherjee, S. (2024). Meta-Posterior Consistency for the Bayesian Inference of Metastable System. Retrieved from https://arxiv.org/abs/2408.01868
  • Ahmadi, N., Nguyen, Q. V., Sedlmayr, M., & Wolfien, M. (2024). A comparative patient-level prediction study in OMOP CDM: applicative potential and insights from synthetic data. Scientific reports, 14(1). Nature Publishing Group.
  • Ahmadi, N., Zoch, M., Guengoeze, O., Facchinello, C., Mondorf, A., Stratmann, K., Musleh, K., et al. (2024). How to customize common data models for rare diseases: an OMOP-based implementation and lessons learned. Orphanet journal of rare diseases, 19(1). BioMed Central, London.
  • Ahvonen, V., Heiman, D., Kuusisto, A., & Lutz, C. (2024). Logical Characterizations of Recurrent Graph Neural Networks with Reals and Floats. Retrieved from https://arxiv.org/abs/2405.14606
  • Akshay, A., Katoch, M., Shekarchizadeh, N., Abedi, M., Sharma, A., Burkhard, F. C., Adam, R. M., et al. (2024). Machine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis. Gigascience, 13.
  • Al-Fatlawi, A., Hossen, M. B., de Paula Lopes, S., Stewart, A. F., & Schroeder, M. (2024). The Rad52 superfamily as seen by AlphaFold. bioRxiv. Cold Spring Harbor Laboratory. Retrieved from https://www.biorxiv.org/content/early/2024/08/09/2024.08.09.607149
  • Al-Fatlawi, A., Hossen, M. B., El-Hendi, F., & Schroeder, M. (2024). Protein secondary structure and remote homology detection. bioRxiv. Cold Spring Harbor Laboratory. Retrieved from https://www.biorxiv.org/content/early/2024/09/06/2024.09.03.611022
  • Aliagha, E., Charaf, N., Venkatesan, N. K., & Göhringer, D. (2024). DA-CGRA: Domain-Aware Heterogeneous Coarse-Grained Reconfigurable Architecture for the Edge. In 2024 27th Euromicro Conference on Digital System Design (DSD) (pp. 410–417).
  • Alishahi, M., Little, A., & Phillips, J. M. (2024). Linear Distance Metric Learning with Noisy Labels. Journal of Machine Learning Research, 25(121), 1–53. Retrieved from http://jmlr.org/papers/v25/23-0791.html
  • Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferrandis, C. M., Muennighoff, N., et al. (2023). SantaCoder: don’t reach for the stars!. arXiv.
  • Altmann, M., Ukhova, N., Volkmann, N., & Schoop, E. (2024). Blending Physical and Virtual Mobility in Higher Education. In T. Köhler, E. Schoop, N. Kahnwald, & R. Sonntag (Eds.), Communities in New Media. Inclusive digital: Forming Community in an Open Way Self-determined Participation in the Digital Transformation (Vol. 26, pp. 329–334). Retrieved from https://tu-dresden.de/codip/ergebnisse-transfer/veranstaltungen/geneme
  • Amouzouvi, K., Song, B., Vahdati, S., & Lehmann, J. (2024). Knowledge GeoGebra: Leveraging Geometry of Relation Embeddings in Knowledge Graph Completion. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC/COLING 2024, 20-25 May, 2024, Torino, Italy (pp. 9832–9842). ELRA and ICCL. Retrieved from https://aclanthology.org/2024.lrec-main.859
  • Anand, M., Bohn, F. J., Camps-Valls, G., Fischer, R., Huth, A., Sweet, L.- belle, & Zscheischler, J. (2024). Identifying compound weather drivers of forest biomass loss with generative deep learning. Environmental Data Science, 3. Cambridge University Press (CUP). Retrieved from http://dx.doi.org/10.1017/eds.2024.2
  • Anand, M., Hamed, R., Linscheid, N., Silva, P. S., Andre, J., Zscheischler, J., Garry, F. K., et al. (2024). Winter climate preconditioning of summer vegetation extremes in the Northern Hemisphere. Environmental research letters, 19(9). IOP Publishing Ltd.
  • André, L. M., Campbell, R., D’Arcy, E., Farrell, A., Healy, D., Kakampakou, L., Murphy, C., et al. (2024). Extreme value methods for estimating rare events in Utopia. Extremes (Boston). Springer Science and Business Media LLC.
  • André, L. M., Campbell, R., DtextquoterightArcy, E., Farrell, A., Healy, D., Kakampakou, L., Murphy, C., et al. (2024). Extreme value methods for estimating rare events in Utopia. Extremes : statistical theory and applications in science, engineering and economics, 1–23. Springer Science + Business Media, Dordrecht.
  • Ankolekar, A., Boie, S., Abdollahyan, M., Gadaleta, E., Hasheminasab, S. A., Yang, G., Beauville, C., et al. (2024). Advancing oncology with federated learning: transcending boundaries in breast, lung, and prostate cancer. A systematic review. Retrieved from https://arxiv.org/abs/2408.05249
  • Arndt, D., De Roo, J., Hochstenbach, P., Martens, R., Ongenae, F., & van Noort, M. (2024). RDF Surfaces as a First-Order Language for the Semantic Web. In S. Kirrane, M. Šimkus, A. Soylu, & D. Roman (Eds.), Rules and Reasoning (pp. 200–216). Cham: Springer Nature Switzerland.
  • Arya, S., Curry, J., & Mukherjee, S. (2024). A Sheaf-Theoretic Construction of Shape Space. Foundations of Computational Mathematics.
  • Aveni, A., & Mukherjee, S. (2024). Uniform Consistency of Generalized Fréchet Means. Retrieved from https://arxiv.org/abs/2408.07534
  • Avila Santos, A. P., de Almeida, B. L. S., Bonidia, R. P., Stadler, P. F., Stefanic, P., Mandic-Mulec, I., Rocha, U., et al. (2024). BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification. RNA Biology, 21(1), 410–421. Informa UK Limited. Retrieved from http://dx.doi.org/10.1080/15476286.2024.2329451
  • Aydin, I., Diebel-Fischer, H., Freiberger, V., Möller-Klapperich, J., Buchmann, E., Färber, M., Lauber-Rönsberg, A., et al. (2024). Assessing Privacy Policies with AI: Ethical, Legal, and Technical Challenges.
  • Ayele, A. A., Babakov, N., Bevendorff, J., Casals, X. B., Chulvi, B., Dementieva, D., Elnagar, A., et al. (2024). Overview of PAN 2024: Multi-author Writing Style Analysis, Multilingual Text Detoxification, Oppositional Thinking Analysis, and Generative AI Authorship Verification Condensed Lab Overview. In International Conference of the Cross-Language Evaluation Forum for European Languages (pp. 231–259). Springer.
  • Baader, F., & De Bortoli, F. (2024). Logics with Concrete Domains: First-Order Properties, Abstract Expressive Power, and (Un)Decidability. SIGAPP Appl. Comput. Rev., 24(3), 5–17. New York, NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3699839.3699840
  • Baader, F., & De Bortoli, F. (2024). Logics with Concrete Domains: First-Order Properties, Abstract Expressive Power, and (Un)Decidability. ACM SIGAPP Applied Computing Review, 24(3), 5–17. Association for Computing Machinery (ACM), New York.
  • Baader, F., & De Bortoli, F. (2024). The Abstract Expressive Power of First-Order and Description Logics with Concrete Domains. In Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing (pp. 754–761). United States of America: Association for Computing Machinery (ACM), New York.
  • Baader, F., & De Bortoli, F. (2024). The abstract expressive power of first-order and description logics with concrete domains. In Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing. Avila Spain: ACM.
  • Baader, F., & Fernández Gil, O. (2024). Unification in the Description Logic $$backslashmathcal ELH_backslashmathcal R^+$$Without the Top Concept Modulo Cycle-Restricted Ontologies. In C. Benzmüller, M. J. Heule, & R. A. Schmidt (Eds.), Automated Reasoning (pp. 279–297). Cham: Springer Nature Switzerland.
  • Baader, F., & Fernández Gil, O. (2024). Unification in the Description Logic $mathcalELH_mathcalR^+$ without the Top Concept Modulo Cycle-Restricted Ontologies. In C. Benzmüller, M. J. Heule, & R. A. Schmidt (Eds.), Automated Reasoning - 12th International Joint Conference, IJCAR 2024, Nancy, France, July 1-6, 2024, Proceedings, Part II, Lecture Notes in Computer Science (Vol. 14740, pp. 279–297). Springer.
  • Baader, F., & Giesl, J. (2024). On the Complexity of the Small Term Reachability Problem for Terminating Term Rewriting Systems. In J. Rehof (Ed.), 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024), Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 299, pp. 16:1–16:18). Dagstuhl, Germany: Schloss Dagstuhl -- Leibniz-Zentrum für Informatik. Retrieved from https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.16
  • Baader, F., & Gil, O. F. (2024). Unification in the Description LogicWithout the Top Concept Modulo Cycle-Restricted Ontologies. In IJCAR (2) (pp. 279–297). Retrieved from https://doi.org/10.1007/978-3-031-63501-4_15
  • Baader, F., Kriegel, F., & Nuradiansyah, A. (2024). Inconsistency- and Error-Tolerant Reasoning w.r.t. Optimal Repairs of ℰℒ⊥ Ontologies. In Proceedings of the 13th International Symposium on Foundations of Information and Knowledge Systems (FoIKS 2024), April 8--11, 2024, Sheffield, United Kingdom, Lecture Notes in Computer Science (Vol. 14589, pp. 3–22). Springer.
  • Baader, F., Kriegel, F., & Nuradiansyah, A. (2024). Inconsistency- and Error-Tolerant Reasoning w.r.t. Optimal Repairs of ℰℒ⊥ Ontologies (Extended Version) ( No. 24-02). Dresden, Germany: Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden.
  • Baader, F., & Wassermann, R. (2024). Contractions Based on Optimal Repairs. In Proceedings of the TwentyFirst International Conference on Principles of Knowledge Representation and Reasoning, KR-2024 (pp. 94–105). International Joint Conferences on Artificial Intelligence Organization. Retrieved from http://dx.doi.org/10.24963/kr.2024/9
  • Baddam, P., Glass, A., Jäkel, R., Jander, J., Krause, T., Kunert, P., Noennig, J. R., et al. (2024). Evaluating Tabular Data Generation Techniques on the DaFne Platform: Insights from a Predictive Maintenance Case Study on Bridges. In X.-S. Yang, S. Sherratt, N. Dey, & A. Joshi (Eds.), Proceedings of Ninth International Congress on Information and Communication Technology (pp. 611–628). Singapore: Springer Nature Singapore.
  • Baek, Y., Papagiannouli, K., & Mukherjee, S. (2024). On the Frequentist Coverage of Bayes Posteriors in Nonlinear Inverse Problems. Retrieved from https://arxiv.org/abs/2407.13970
  • Barrasso, C., Krüger, R., Eltner, A., & Cord, A. F. (2024). Mapping indicator species of segetal flora for result-based payments in arable land using UAV imagery and deep learning. Ecological indicators, 169. Elsevier Science B.V.
  • Barrett, R., & Westermayr, J. (2024). Reinforcement Learning for Traversing Chemical Structure Space: Optimizing Transition States and Minimum Energy Paths of Molecules. The Journal of Physical Chemistry Letters, 15(1), 349–356. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.1021/acs.jpclett.3c02771
  • Bartelt, B., & Buchmann, E. (2024). Transparency in Privacy Policies. In .
  • Barth, L. S., Fatemeh, Fahimi, Joharinad, P., Jost, J., & Keck, J. (2024). IsUMap: Manifold Learning and Data Visualization leveraging Vietoris-Rips filtrations. Retrieved from https://arxiv.org/abs/2407.17835
  • Barth, L. S., Fatemeh, Fahimi, Joharinad, P., Jost, J., Keck, J., & Mikhail, T. J. (2024). Fuzzy simplicial sets and their application to geometric data analysis. Retrieved from https://arxiv.org/abs/2406.11154
  • Batebi, H., Pérez-Hernández, G., Rahman, S. N., Lan, B., Kamprad, A., Shi, M., Speck, D., et al. (2024). Mechanistic insights into G-protein coupling with an agonist-bound G-protein-coupled receptor. Nature structural & molecular biology, 1–10. Nature Publishing Group US New York.
  • Bauer, M., & Augenstein, C. (2024). Self-supervised learning in histopathology: New perspectives for prostate cancer grading. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 348–360). Cham: Springer Nature Switzerland.
  • Bauer, M., Schneider, L., Bernhardt, M., Augenstein, C., Kristiansen, G., & Franczyk, B. (2024). An Open-Source Approach for Digital Prostate Cancer Histopathology: Bringing AI into Practice. In Proceedings of the 26th International Conference on Enterprise Information Systems - Volume 1: ICEIS (pp. 729–738). SciTePress.
  • Baumann, R., & Heine, A.-M. (2024). On Naive Labellings--Realizability, Construction and Patterns of Redundancy. In International Symposium on Foundations of Information and Knowledge Systems (pp. 125–143). Springer.
  • Baumann, R., & Strass, H. (2024). Consequence Operators of Characterization Logics – The Case of Abstract Argumentation. In (pp. 154–166).
  • Bazilinskyy, P., Ebel, P., Walker, F., Dey, D., & Tran, T. T. M. (2024). It Is Not Always Just One Road User: Workshop on Multi-Agent Automotive Research. In Adjunct Proceedings of the 16th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’24 Adjunct (pp. 268–272). Stanford, CA, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3641308.3677400
  • Berchuck, S. I., Medeiros, F. A., Mukherjee, S., & Agazzi, A. (2024). Scalable Bayesian inference for the generalized linear mixed model. Retrieved from https://arxiv.org/abs/2403.03007
  • Berger, D., Schilling, R. L., Shargorodsky, E., & Sharia, T. (2024). An extension of the Liouville theorem for Fourier multipliers to sub-exponentially growing solutions. Retrieved from https://arxiv.org/abs/2401.12876
  • Berres, A., Nsonga, B., Clark, C., Jeffers, R., Hagen, H., & Scheuermann, G. (2024). Evaluating the Impact of Power Outages on Occupancy Patterns During the 2021 Texas Power Crisis. In 2024 IEEE Workshop on Energy Data Visualization (EnergyVis) (pp. 40–45).
  • Berthold, M., Rapberger, A., & Ulbricht, M. (2024). Capturing Non-flat Assumption-based Argumentation with Bipolar SETAFs. In Proc. KR.
  • Berthold, M., & Ulbricht, M. (2024). On Forgetting in Assumption-Based Argumentation. In (pp. 235–261).
  • Bevendorff, J., Casals, X. B., Chulvi, B., Dementieva, D., Elnagar, A., Freitag, D., Fröbe, M., et al. (2024). Overview of PAN 2024: Multi-author Writing Style Analysis, Multilingual Text Detoxification, Oppositional Thinking Analysis, and Generative AI Authorship Verification: Extended Abstract. In Advances in Information Retrieval (pp. 3–10). Springer Nature Switzerland. Retrieved from http://dx.doi.org/10.1007/978-3-031-56072-9_1
  • Bevendorff, J., Wiegmann, M., Potthast, M., & Stein, B. (2024). Is Google getting worse? A longitudinal investigation of SEO spam in search engines. In Lecture Notes in Computer Science, Lecture notes in computer science (pp. 56–71). Cham: Springer Nature Switzerland.
  • Bevendorff, J., Wiegmann, M., Potthast, M., & Stein, B. (2024). Product Spam on YouTube: A Case Study. In Proceedings of the 2024 Conference on Human Information Interaction and Retrieval, CHIIR ’24 (pp. 358–363). Sheffield, United Kingdom: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3627508.3638303
  • Beylier, C., Hofmann, S. M., & Scherf, N. (2024). Revealing the learning process in reinforcement learning agents through attention-oriented metrics. Retrieved from https://arxiv.org/abs/2406.14324
  • Bikić, A., & Mukherjee, S. (2024). Pragmatist Intelligence: Where the Principle of Usefulness Can Take ANNs. Retrieved from https://arxiv.org/abs/2405.04386
  • Billing, M., Sakschewski, B., von Bloh, W., Vogel, J., & Thonicke, K. (2024). ‘How to adapt forests?’—Exploring the role of leaf trait diversity for long‐term forest biomass under new climate normals. Global Change Biology, 30(4). Wiley. Retrieved from http://dx.doi.org/10.1111/gcb.17258
  • Blümel, L., König, M., & Ulbricht, M. (2024). Weak Admissibility for ABA via Abstract Set Attacks. In Proc. KR.
  • Bodirsky, M., Semanišinová, Žaneta, & Lutz, C. (2024). The Complexity of Resilience Problems via Valued Constraint Satisfaction Problems. In Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’24 (pp. 1–14). Tallinn, Estonia: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3661814.3662071
  • Böhl, E., Ellmauthaler, S., & Gaggl, S. A. (2024). Winning Snake: Design Choices in Multi-Shot ASP. Retrieved from https://arxiv.org/abs/2408.08150
  • Bohlinger, S., & Hummel, S. (2024). Digital Capacity Building in Teacher Education: An Environmental Case Study from Cambodia. In S. Hummel (Ed.), Empowering Education in Cambodia and Sri Lanka: Advancing Quality in 21st Century Teaching and Learning, Doing Higher Education (pp. 31–50). Germany: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Borgwardt, S., Bortoli, F. D., & Koopmann, P. (2024). The Precise Complexity of Reasoning in $mathcalALC$ with $omega$-Admissible Concrete Domains (Extended Version). Retrieved from https://doi.org/10.48550/arXiv.2405.19096
  • Brown, B. P., Stein, R. A., Meiler, J., & Mchaourab, H. S. (2024). Approximating Projections of Conformational Boltzmann Distributions with AlphaFold2 Predictions: Opportunities and Limitations. Journal of Chemical Theory and Computation, 20(3), 1434–1447. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.1021/acs.jctc.3c01081
  • Büschel, W., Krug, K., Satkowski, M., Gumhold, S., & Dachselt, R. (2024). A Research Platform for Studying Mixed-Presence Collaboration. In 2024 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (pp. 243–246).
  • Buraglio, G., Dvorak, W., König, M., & Ulbricht, M. (2024). Justifying argument acceptance with collective attacks: Discussions and disputes. In Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence. Jeju, South Korea: International Joint Conferences on Artificial Intelligence Organization.
  • Burek, P., Loebe, F., & Herre, H. (2024). Ontology patterns for function modeling with GFO. In .
  • Burek, P., Loebe, F., Schäfermeier, R., Uciteli, A., Kondracki, B., & Herre, H. (2024). Ontologically Founded Design Patterns for Situation Modeling. In Proceedings of the 32nd International Conference on Information Systems Development, ISD 2024. University of Gdańsk. Retrieved from http://dx.doi.org/10.62036/ISD.2024.85
  • Caminada, M., König, M., Rapberger, A., & Ulbricht, M. (2024). Attack semantics and collective attacks revisited. Argument & Computation, 1–77. SAGE Publications. Retrieved from http://dx.doi.org/10.3233/aac-230011
  • Camps-Valls, G., Fernández-Torres, M.- Ángel, Cohrs, K.-H., Höhl, A., Castelletti, A., Pacal, A., Robin, C., et al. (2024). AI for Extreme Event Modeling and Understanding: Methodologies and Challenges.
  • Carnot, M. L., Peukert, E., & Franczyk, B. (2024). Enhancing Roadway Safety: LIDAR-based Tree Clearance Analysis. CoRR, abs/2402.18309. Retrieved from https://doi.org/10.48550/arXiv.2402.18309
  • Carvalho, T. M. N., de Assis de Souza Filho, F., & de Brito, M. M. (2024). Unveiling water allocation dynamics: a text analysis of 25 years of stakeholder meetings. Environmental Research Letters, 19(4), 044066. IOP Publishing.
  • Carvalho, T. M. N., Zscheischler, J., Kuhlicke, C., & de Brito, M. M. (2024). A global database of natural hazards impacts reported in the scientific literature. EGU General Assembly Conference Abstracts, 19940.
  • Carvalho, T. M. N., Zscheischler, J., Kuhlicke, C., & de Brito, M. M. (2024). A global database of natural hazards impacts reported in the scientific literature, (EGU24-19940). Copernicus Meetings.
  • Castrillon, J. (2024, August). High-level programming abstractions and compilation for near and in-memory computing. Madrid, Spain.
  • Cavalcante, L., Walker, D. W., Kchouk, S., Neto, G. R., Carvalho, T. M. N., de Brito, M. M., Pot, W., et al. (2024). From insufficient rainfall to livelihoods: understanding the cascade of drought impacts and policy implications. EGUsphere, 2024, 1–20. Copernicus Publications.
  • Changat, M., Shanavas, A. V., & Stadler, P. F. (2024). Transit functions and pyramid-like binary clustering systems. Discrete Applied Mathematics, 357, 365–384. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.dam.2024.06.032
  • Chen, G., Fricke, H., Okhrin, O., & Rosenow, J. (2024). Flight delay propagation inference in air transport networks using the multilayer perceptron. Journal of air transport management, 114. Elsevier, Oxford [u.a.].
  • Chen, Z., Xiao, Z., Akl, M., Leugring, J., Olajide, O., Malik, A., Dennler, N., et al. (2024). ON-OFF Neuromorphic ISING Machines using Fowler-Nordheim Annealers.
  • Cheng, Y., Oehmcke, S., Mosig, C., Mirela, B., Kattenborn, T., Abel, C., Gominski, D., et al. (2024). High-resolution mapping of tree mortality in European forests, (EGU24-20213). Copernicus Meetings.
  • Christen, V., Obraczka, D., Hofer, M., Franke, M., & Rahm, E. (2024). Graph-based Active Learning for Entity Cluster Repair. arXiv preprint arXiv:2401.14992.
  • Cimini, B. A., Bankhead, P., d’Antuono, R., Fazeli, E., Fernandez-Rodriguez, J., Fuster-Barceló, C., Haase, R., et al. (2024). The crucial role of bioimage analysts in scientific research and publication. Journal of cell science, 137(20). The Company of Biologists.
  • Conroy, M., Gillmann, C., Harvey, F., Mchedlidze, T., Fabrikant, S. I., Windhager, F., Scheuermann, G., et al. (2024). Uncertainty in humanities network visualization. Frontiers in Communication, 8. Retrieved from https://www.frontiersin.org/journals/communication/articles/10.3389/fcomm.2023.1305137
  • Daniel, E., & Tschorsch, F. (2024). Exploring the design space of privacy-enhanced content discovery for bitswap. Computer Communications, 217, 12–24. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.comcom.2024.01.029
  • Daniel, E., & Tschorsch, F. (2024). Poster: On Integrating Sphinx in IPFS. In Proceedings of the 2024 ACM on Internet Measurement Conference, IMC ’24 (pp. 753–754). Madrid, Spain: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3646547.3689663
  • Dasari, M. R., Roche, K. E., Jansen, D., Anderson, J., Alberts, S. C., Tung, J., Gilbert, J. A., et al. (2024). Social and environmental predictors of gut microbiome age in wild baboons. bioRxiv. Cold Spring Harbor Laboratory. Retrieved from https://www.biorxiv.org/content/early/2024/08/04/2024.08.02.605707
  • Davutoglu, M. G., Geyer, V. F., Niese, L., Soltwedel, J. R., Zoccoler, M. L., Sabatino, V., Haase, R., et al. (2024). Gliding motility of the diatom Craspedostauros australis coincides with the intracellular movement of raphid-specific myosins. Communications Biology, 7(1), 1187. Nature Publishing Group UK London.
  • Davutoglu, M. G., Geyer, V. F., Niese, L., Soltwedel, J. R., Zoccoler, M. L., Haase, R., Kroeger, N., et al. (2024). Gliding motility of the diatom Craspedostauros australis correlates with the intracellular movement of raphid-specific myosins. bioRxiv, 2024–03. Cold Spring Harbor Laboratory.
  • De Bortoli, F., Borgwardt, S., & Koopmann, P. (2024). The Precise Complexity of Reasoning in ALC with ω-Admissible Concrete Domains. In L. Giordano, J. C. Jung, & A. Ozaki (Eds.), Proceedings of the 37th International Workshop on Description Logics (DL 2024) (Vol. 3739). CEUR-WS.org.
  • de Carvalho, A., Bonidia, R., Kong, J. D., Dauhajre, M., Struchiner, C., Goedert, G., Stadler, P. F., et al. (2024). Democratising Artificial Intelligence for Pandemic Preparedness and Global Governance in Latin American and Caribbean Countries. arXiv. Retrieved from https://arxiv.org/abs/2409.14181
  • de Lima, J. P. C., Khan, A. A., Carro, L., & Castrillon, J. (2024). Full-stack optimization for CAM-only DNN inference. arXiv.
  • de Oliveira Lima, L., de Carvalho Santos, L. D., Carvalho, T. M. N., & de Assis Souza Filho, F. (2024). Análise do desempenho de valas de infiltração para controle pluvial em cenários de mudanças climáticas: estudo de caso Fortaleza (CE). Revista DAE, 72(245), 01–12.
  • De, T., Andriasyan, V., & Yakimovich, A. (2024). PyPlaque: an Open-source Python Package for Phenotypic Analysis of Virus Plaque Assays. bioRxiv. Cold Spring Harbor Laboratory. Retrieved from https://www.biorxiv.org/content/early/2024/08/08/2024.08.07.603274
  • Debeire, K., Bock, L., Nowack, P., Runge, J., & Eyring, V. (2024). Constraining uncertainty in projected precipitation over land with causal discovery. EGUsphere, 2024, 1–32. Retrieved from https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2656/
  • Dechant, B., Kattge, J., Pavlick, R., Schneider, F. D., Sabatini, F. M., Moreno-Martínez, Álvaro, Butler, E. E., et al. (2024). Intercomparison of global foliar trait maps reveals fundamental differences and limitations of upscaling approaches. Remote Sensing of Environment, 311, 114276. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.rse.2024.114276
  • DeCorte, J., Brown, B., & Meiler, J. (2024). Interpretable deep-learning pKa prediction for small molecule drugs via atomic sensitivity analysis. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.26434/chemrxiv-2024-hr692
  • Demirel, M. C., Koch, J., Rakovec, O., Kumar, R., Mai, J., Müller, S., Thober, S., et al. (2024). Tradeoffs Between Temporal and Spatial Pattern Calibration and Their Impacts on Robustness and Transferability of Hydrologic Model Parameters to Ungauged Basins. Water Resources Research, 60(1). American Geophysical Union (AGU). Retrieved from http://dx.doi.org/10.1029/2022WR034193
  • Deng, C., Li, X., Schilling, R. L., & Xu, L. (2024). Total variation distance between SDEs with stable noise and Brownian motion with applications to Poisson PDEs. Retrieved from https://arxiv.org/abs/2407.21306
  • Derraz, B., Breda, G., Kaempf, C., Baenke, F., Cotte, F., Reiche, K., Köhl, U., et al. (2024). New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology. npj Precision Oncology, 8(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1038/s41698-024-00517-w
  • Diebel-Fischer, H. (2024). Künstliche Intelligenz und Ethik: Von der Unberechenbarkeit moralischer Erwägungen. Evangelische Aspekte, 34(1), 25–27. Evangelische Akademikerschaft in Deutschland e. V.
  • Dietrich, K., Prager, R. P., Doerr, C., & Trautmann, H. (2024). Hybridizing Target- and SHAP-encoded Features for Algorithm Selection in Mixed-variable Black-box Optimization. Retrieved from https://arxiv.org/abs/2407.07439
  • Dietrich, K., Vermetten, D., Doerr, C., & Kerschke, P. (2024). Impact of Training Instance Selection on Automated Algorithm Selection Models for Numerical Black-box Optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 1007–1016). United States of America: Association for Computing Machinery (ACM).
  • Dimopoulos, Y., Dvorak, W., König, M., Rapberger, A., Ulbricht, M., & Woltran, S. (2024). Redefining ABA+ semantics via abstract set-to-set attacks. Proc. Conf. AAAI Artif. Intell., 38(9), 10493–10500. Association for the Advancement of Artificial Intelligence (AAAI).
  • Domschke, N., Schmidt, B., Gatter, T., Golnik, R., Eisenhuth, P., Liessmann, F., Meiler, J., et al. (2024). Crossover Operators for Molecular Graphs with an Application to Virtual Drug Screening. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.26434/chemrxiv-2024-41295
  • Dvov rák, W., König, M., Ulbricht, M., & Woltran, S. (2024). Principles and their computational consequences for argumentation frameworks with collective attacks. J. Artif. Intell. Res., 79, 69–136. AI Access Foundation.
  • Ebel, P. (2024). Generative AI and Attentive User Interfaces: Five Strategies to Enhance Take-Over Quality in Automated Driving. Retrieved from https://arxiv.org/abs/2402.10664
  • Ebel, P., Bazilinskyy, P., Colley, M., Goodridge, C. M., Hock, P., Janssen, C., Sandhaus, H., et al. (2024). Changing Lanes Toward Open Science: Openness and Transparency in Automotive User Research. Center for Open Science. Retrieved from http://dx.doi.org/10.31219/osf.io/tmkc2
  • Ebert, M. P., Meindl-Beinker, N. M., Gutting, T., Maenz, M., Betge, J., Schulte, N., Zhan, T., et al. (2022). Second-line therapy with nivolumab plus ipilimumab for older patients with oesophageal squamous cell cancer (RAMONA): a multicentre, open-label phase 2 trial. Lancet Healthy Longev., 3(6), e417-e427. Elsevier BV.
  • Eckardt, J.-N., Hahn, W., Röllig, C., Stasik, S., Platzbecker, U., Müller-Tidow, C., Serve, H., et al. (2024). Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence. NPJ Digit. Med., 7(1), 76.
  • Eichholz, H. M., Cornelis, A., Wolf, B., Grubitzsch, H., Friedrich, P., Makky, A., Aktas, B., et al. (2024). Anatomy of the fetal membranes: Insights from spinning disk confocal microscopy. Archives of Gynecology and Obstetrics, 309(5), 1919–1923. Springer Berlin Heidelberg.
  • Eichholz, H. M., Cornelis, A., Wolf, B., Grubitzsch, H., Friedrich, P., Makky, A., Aktas, B., et al. (2024). Anatomy of the fetal membranes: insights from spinning disk confocal microscopy. Arch. Gynecol. Obstet., 309(5), 1919–1923.
  • Eichholz, H. M., Kretzschmar, J., Umlauft, J., & Quaas, J. (2024). Optimizing Kilometer-Scale Climate Modeling: Refining Cloud Microphysics Using Machine Learning and Satellite Correlation. Copernicus Meetings.
  • Eidi, M., & Mukherjee, S. (2024). Higher Order Bipartiteness vs Bi-Partitioning in Simplicial Complexes. Retrieved from https://arxiv.org/abs/2409.00682
  • Eisenhauer, G., Podhorszki, N., Gainaru, A., Klasky, S., Davis, P. E., Parashar, M., Wolf, M., et al. (2024). Streaming Data in HPC Workflows Using ADIOS. Retrieved from https://arxiv.org/abs/2410.00178
  • Eisenhauer, N., Frank, K., Weigelt, A., Bartkowski, B., Beugnon, R., Liebal, K., Mahecha, M., et al. (2024). A belowground perspective on the nexus between biodiversity change, climate change, and human well-being. Journal of Sustainable Agriculture and Environment, 3(2), e212108. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/sae2.12108
  • Eisenhauer, N., Frank, K., Weigelt, A., Bartkowski, B., Beugnon, R., Liebal, K., Mahecha, M., et al. (2024). A belowground perspective on the nexus between biodiversity change, climate change, and human well-being. Journal of Sustainable Agriculture and Environment, 3(2), e212108.
  • Eisenhuth, P., Liessmann, F., Moretti, R., & Meiler, J. (2024). REvoLd: Ultra-Large Library Screening with an Evolutionary Algorithm in Rosetta. Retrieved from https://arxiv.org/abs/2404.17329
  • Elstner, T., Hanle, B., Loebe, F., Fröbe, M., Kolyada, N., Mohr, J., Frochte, J., et al. (2024). Classification of shared tasks used in teaching. In Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1. Milan Italy: ACM.
  • Erichsmeier, F., Kukushkin, M., Fiedler, J., Enders, M., Goertz, S., Bogdan, M., Schmid, T., et al. (2024). Automating the purity analysis of oilseed rape through usage of hyperspectral imaging. In D. Heinemann & G. Polder (Eds.), Photonic Technologies in Plant and Agricultural Science (p. 21). SPIE.
  • Ertelt, M., Meiler, J., & Schoeder, C. T. (2024). Combining Rosetta Sequence Design with Protein Language Model Predictions Using Evolutionary Scale Modeling (ESM) as Restraint. ACS Synthetic Biology, 13(4), 1085–1092. ACS Publications.
  • Ertelt, M., Moretti, R., Meiler, J., & Schoeder, C. T. (2024). Self-supervised machine learning methods for protein design improve sampling, but not the identification of high-fitness variants. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2024.06.20.599843
  • Ertelt, M., Mulligan, V. K., Maguire, J. B., Lyskov, S., Moretti, R., Schiffner, T., Meiler, J., et al. (2024). Combining machine learning with structure-based protein design to predict and engineer post-translational modifications of proteins. (J. Slusky, Ed.)PLOS Computational Biology, 20(3), e1011939. Public Library of Science (PLoS). Retrieved from http://dx.doi.org/10.1371/journal.pcbi.1011939
  • Estevez, M., Roldan, E., & Segerman, H. (2024). Oriented and Non-oriented Cubical Surfaces in The Penteract. Retrieved from https://arxiv.org/abs/2403.12825
  • Ewald, J., He, Z., Dimitriew, W., & Schuster, S. (2024). Including glutamine in a resource allocation model of energy metabolism in cancer and yeast cells. npj Systems Biology and Applications, 10(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1038/s41540-024-00393-x
  • Faggioli, G., Dietz, L., Clarke, C. L. A., Demartini, G., Hagen, M., Hauff, C., Kando, N., et al. (2024). Who Determines What Is Relevant? Humans or AI? Why Not Both?. Communications of the ACM, 67(4), 31–34. New York, NY, USA: Association for Computing Machinery.
  • Farzana, S. M., Fröbe, M., Granitzer, M., Hendriksen, G., Hiemstra, D., Potthast, M., de Vries, A. P., et al. (2024). Report on the 1st International Workshop on Open Web Search (WOWS 2024) at ECIR 2024. SIGIR Forum, 58(1), 1–13. New York, NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3687273.3687290
  • Farzana, S. M., Fröbe, M., Granitzer, M., Hendriksen, G., Hiemstra, D., Potthast, M., & Zerhoudi, S. (2024). The First International Workshop on Open Web Search (WOWS). In European Conference on Information Retrieval (pp. 426–431). Springer.
  • Farzaneh, H., De Lima, J. P. C., Li, M., Khan, A. A., Hu, X. S., & Castrillon, J. (2024). C4CAM: A compiler for CAM-based in-memory accelerators. In Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3. La Jolla CA USA: ACM.
  • Farzaneh, H., Lima, J. P. C. D., Khelejani, A. N., Khan, A. A., Mayahinia, M., Tahoori, M., & Castrillon, J. (2024). SHERLOCK: Scheduling Efficient and Reliable Bulk Bitwise Operations in NVMs. In Proceedings of the 61th Annual Design Automation Conference (DAC’24), DAC ’24. San Francisco, California: ACM.
  • Ferle, M., Grieb, N., Kreuz, M., Platzbecker, U., Neumuth, T., Reiche, K., Oeser, A., et al. (2024). Predicting Progression Events in Multiple Myeloma from Routine Blood Work. Blood, 144(Supplement 1), 7476–7476. American Society of Hematology. Retrieved from http://dx.doi.org/10.1182/blood-2024-192951
  • Ferme, L. C., Ryan, A. Q., Haase, R., Modes, C. D., & Norden, C. (2024). Timely neurogenesis enables increased nuclear packing order during neuronal lamination. bioRxiv, 2024–11. Cold Spring Harbor Laboratory.
  • Fischer, F., Ikkala, A., Klar, M., Fleig, A., Bachinski, M., Murray-Smith, R., Hämäläinen, P., et al. (2024). SIM2VR: Towards Automated Biomechanical Testing in VR. In Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology, UIST ’24 (pp. 1–15). Pittsburgh, PA, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3654777.3676452
  • Fischer, L., Grieb, N., Born, P., Weiss, R., Seiffert, S., Boldt, A., Fricke, S., et al. (2024). Cellular dynamics following CAR T cell therapy are associated with response and toxicity in relapsed/refractory myeloma. Leukemia, 38(2), 372–382. Retrieved from https://doi.org/10.1038/s41375-023-02129-y
  • Flegel, T., Neumann, A., Holst, A.-L., Kretzschmann, O., Loderstedt, S., Tästensen, C., Gutmann, S., et al. (2024). Machine learning algorithms predict canine structural epilepsy with high accuracy. Frontiers in Veterinary Science, 11. Retrieved from https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2024.1406107
  • Franceschi, L., Donini, M., Perrone, V., Klein, A., Archambeau, C., Seeger, M., Pontil, M., et al. (2024). Hyperparameter Optimization in Machine Learning. Retrieved from https://arxiv.org/abs/2410.22854
  • Franzke, L., Meinecke, C., Schebera, J., & Wiegreffe, D. (2024). Visplorify: Interactive Visual Analysis of Spotify Listening Histories. The Eurographics Association. Retrieved from https://diglib.eg.org/handle/10.2312/evp20241094
  • Freiberger, V., & Buchmann, E. (2024). Legally binding but unfair? Towards assessing fairness of privacy policies. arXiv.
  • Freiberger, V., & Buchmann, E. (2024). Fairness certification for natural Language Processing and Large Language Models. arXiv.
  • Freudiger, A., Jovanovic, V. M., Huang, Y., Snyder-Mackler, N., Conrad, D. F., Miller, B., Montague, M. J., et al. (2024). Taking identity-by-descent analysis into the wild: Estimating realized relatedness in free-ranging macaques. bioRxiv. Cold Spring Harbor Laboratory Preprints.
  • Friedrich, V. D., Pennitz, P., Wyler, E., Adler, J. M., Postmus, D., Alves, L. G. T., Prigann, J., et al. (2024). Neural Network-Assisted Humanization of COVID-19 Hamster scRNAseq Data Reveals Matching Severity States in Human Disease. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2024.01.11.574849
  • Friedrich, V. D., Pennitz, P., Wyler, E., Adler, J. M., Postmus, D., Müller, K., Teixeira Alves, L. G., et al. (2024). Neural network-assisted humanisation of COVID-19 hamster transcriptomic data reveals matching severity states in human disease. eBioMedicine, 108, 105312. Retrieved from https://www.sciencedirect.com/science/article/pii/S2352396424003487
  • Fröbe, M., Günther, S., Probst, M., Potthast, M., & Hagen, M. (2022). Webis-MS-MARCO-Anchor-Texts-22. Zenodo.
  • Fröbe, M., Mackenzie, J., Mitra, B., Nardini, F. M., & Potthast, M. (2024). ReNeuIR at SIGIR 2024: The third workshop on reaching efficiency in neural information retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (Vol. 31, pp. 3051–3054). Washington DC USA: ACM.
  • Fröbe, M., Reimer, J. H., MacAvaney, S., Deckers, N., Reich, S., Bevendorff, J., Stein, B., et al. (2024). The Information Retrieval Experiment Platform (Extended Abstract). In Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence, IJCAI-2024 (pp. 8405–8410). International Joint Conferences on Artificial Intelligence Organization. Retrieved from http://dx.doi.org/10.24963/ijcai.2024/931
  • Fröbe, M., Scells, H., Elstner, T., Akiki, C., Gienapp, L., Reimer, J. H., MacAvaney, S., et al. (2024). Resources for Combining Teaching and Research in Information Retrieval Coursework. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024 (pp. 1115–1125). ACM. Retrieved from http://dx.doi.org/10.1145/3626772.3657886
  • Gallo, G., Okhrin, O., & Storti, G. (2024). Dynamic tail risk forecasting: what do realized skewness and kurtosis add?.
  • Ganter, B., Hanika, T., Hirth, J., & Obiedkov, S. (2024). Collaborative Hybrid Human AI Learning through Conceptual Exploration.
  • Garcia-Chung, A., Bermúdez-Montaña, M., Stadler, P. F., Jost, J., & Restrepo, G. (2024). Chemically inspired Erdős–Rényi hypergraphs. Journal of Mathematical Chemistry, 62(6), 1357–1383. Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1007/s10910-024-01595-8
  • Geldhauser, C., & Diebel-Fischer, H. (2024). Is diverse and inclusive AI trapped in the gap between reality and algorithmizability?. In Northern Lights Deep Learning Conference (pp. 75–80). PMLR.
  • Genest, C., Okhrin, O., & Bodnar, T. (2024). Copula modeling from Abe Sklar to the present day. Journal of Multivariate Analysis, 201. Academic Press Inc.
  • Genest, C., Okhrin, O., & Bodnar, T. (2024). Preface to the Special Issue “Copula modeling from Abe Sklar to the present day”. Journal of Multivariate Analysis, 201. Academic Press Inc.
  • Gerlach, L., Carral, D., & Hecher, M. (2024). Finite Groundings for ASP with Functions: A Journey through Consistency. Retrieved from https://arxiv.org/abs/2405.15794
  • Gerritzen, J., Hornig, A., & Gude, M. (2024). Graph based process models as basis for efficient data driven surrogates - Expediting the material development process. engrXiv : engineering archive, engrXiv : engineering archive. Open Engineering Inc.
  • Gerritzen, J., Hornig, A., Winkler, P., & Gude, M. (2024). A methodology for direct parameter identification for experimental results using machine learning — Real world application to the highly non-linear deformation behavior of FRP. Computational Materials Science, 244 (2024). Elsevier Science B.V.
  • Gerritzen, J., Hornig, A., Winkler, P., & Gude, M. (2024). Direct parameter identification for highly nonlinear strain rate dependent constitutive models using machine learning. In ECCM21 - Proceedings of the 21st European Conference on Composite Materials (Vol. 3, pp. 1252–1259). European Society for Composite Materials (ESCM). Retrieved from https://eccm21.org/
  • Ghaleb, E., Burenko, I., Rasenberg, M., Pouw, W., Toni, I., Uhrig, P., Wilson, A., et al. (2024). Leveraging Speech for Gesture Detection in Multimodal Communication. Retrieved from https://arxiv.org/abs/2404.14952
  • Gienapp, L., Scells, H., Deckers, N., Bevendorff, J., Wang, S., Kiesel, J., Syed, S., et al. (2024). Evaluating Generative Ad Hoc Information Retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024 (pp. 1916–1929). ACM. Retrieved from http://dx.doi.org/10.1145/3626772.3657849
  • Gillmann, C., Schmidt, J., & Wiegreffe, D. (2024). Interactive Visualization in Applications. IEEE Computer Graphics and Applications, 44(1), 10–12.
  • Glass, A., Noennig, J. R., Bek, B., Glass, R., Menges, E. K., Okhrin, I., Baddam, P., et al. (2024). Innovative Urban Design Simulation: Utilizing Agent-Based Modelling through Reinforcement Learning. In Proceedings of the 2023 6th International Conference on Computational Intelligence and Intelligent Systems, CIIS ’23 (pp. 20–25). Tokyo, Japan: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3638209.3638213
  • Glover, T. E., Jahren, R., Martinuzzi, F., Lind, P. G., & Nichele, S. (2024). A Sensitivity Analysis of Cellular Automata and Heterogeneous Topology Networks: Partially-Local Cellular Automata and Homogeneous Homogeneous Random Boolean Networks. arXiv e-prints, arXiv: 2407.18017.
  • Glover, T. E., Jahren, R., Martinuzzi, F., Lind, P. G., & Nichele, S. (2024). A sensitivity analysis of cellular automata and heterogeneous topology networks: partially-local cellular automata and homogeneous homogeneous random boolean networks. International Journal of Parallel, Emergent and Distributed Systems, 1–41. Taylor & Francis.
  • Gohsen, M., Hagen, M., Potthast, M., & Stein, B. (2024). Task-Oriented Paraphrase Analytics. arXiv.
  • González Laffitte, M. E., Weinbauer, K., Phan, T.-L., Beier, N., Domschke, N., Flamm, C., Gatter, T., et al. (2024). Partial Imaginary Transition State (ITS) Graphs: A Formal Framework for Research and Analysis of Atom-to-Atom Maps of Unbalanced Chemical Reactions and Their Completions. Symmetry, (9), 1217. Multidisciplinary Digital Publishing Institute.
  • González Laffitte, M. E., & Stadler, P. F. (2024). Progressive Multiple Alignment of Graphs. Algorithms, 17(3). Retrieved from https://www.mdpi.com/1999-4893/17/3/116
  • Gonzalez, J., Dipu, S., Sourdeval, O., Siméon, A., Camps-Valls, G., & Quaas, J. (2024). Emulation of Forward Modelled Top-Of-Atmosphere MODIS-based Spectral Channels using Machine Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1–17.
  • Graebling, N., Althaus, M., Şen, Özgür O., Reimann, T., Cajuhi, T., Scheuermann, G., Kolditz, O., et al. (2024). “Feels Like an Indie Game”—Evaluation of a Virtual Field Trip Prototype on Radioactive Waste Management Research for University Education. IEEE Computer Graphics and Applications, 44(1), 13–24.
  • Granitzer, M., Voigt, S., Fathima, N. A., Golasowski, M., Guetl, C., Hecking, T., Hendriksen, G., et al. (2024). Impact and development of an Open Web Index for open web search. Journal of the Association for Information Science and Technology, 75(5), 512–520. Wiley Online Library.
  • Gröger, B., Gerritzen, J., Hornig, A., & Gude, M. (2024). Developing a numerical modelling strategy for metallic pin pressing processes in fibre reinforced thermoplastics to investigate fibre rearrangement mechanisms during joining. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 238(12), 2286–2298. SAGE Publications.
  • Groenke, B., Aalstad, K., Pirk, N., Westermann, S., Zscheischler, J., Gallego, G., & Boike, J. (2024). Simulation-based inference as a paradigm for scientific machine learning in the cryosphere and beyond. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/egusphere-egu24-16847
  • Guarnier, G., Reinelt, J., Molloy, E. N., Mihai, P. G., Einaliyan, P., Valk, S., Modestino, A., et al. (2024). Cascaded Multimodal Deep Learning in the Differential Diagnosis, Progression Prediction, and Staging of Alzheimer’s and Frontotemporal Dementia. medRxiv, 2024–09. Cold Spring Harbor Laboratory Press.
  • Günther, W., Popescu, O.-I., Rabel, M., Ninad, U., Gerhardus, A., & Runge, J. (2024). Causal discovery with endogenous context variables. Retrieved from https://arxiv.org/abs/2412.04981
  • Guhr, O., Loitsch, C., Weber, G., & Böhme, H.-J. (2024). Enhancing Usability of Voice Interfaces for Socially Assistive Robots Through Deep Learning: A German Case Study. In H. Degen & S. Ntoa (Eds.), Artificial Intelligence in HCI - 5th International Conference, AI-HCI 2024, Held as Part of the 26th HCI International Conference, HCII 2024, Proceedings, Lecture Notes in Computer Science (Vol. 2, pp. 231–249). Springer, Cham.
  • Gutleb, T. S., Barrett, R., Westermayr, J., & Ortner, C. (2024). Parameterizing Intersecting Surfaces via Invariants. Retrieved from https://arxiv.org/abs/2407.03731
  • Guzman, G. E. C., Stadler, P. F., & Fujita, A. (2024). Cavity approach for the approximation of spectral density of graphs with heterogeneous structures. Phys. Rev. E, 109(3), 034303. American Physical Society. Retrieved from https://link.aps.org/doi/10.1103/PhysRevE.109.034303
  • Gwerder, M., Demir, C. S., Williams, H. L., Lugli, A., Martinez, C. G., Kowal, J., Khan, A., et al. (2024). Morpho-molecular features of Epithelial Mesenchymal Transition associate with clinical outcome in patients with rectal cancer. bioRxiv. Cold Spring Harbor Laboratory. Retrieved from https://www.biorxiv.org/content/early/2024/11/10/2024.11.07.622481
  • Haase, J., Charaf, N., Groß, A., & Göhringer, D. (2024). NC-Library: Expanding SystemC Capabilities for Nested reConfigurable Hardware Modelling. ACM Transactions on Reconfigurable Technology and Systems, 17(3), 1–29. Association for Computing Machinery (ACM), New York.
  • Haase, R. (2024, October). Towards Transparency and Knowledge Exchange in AI- assisted Data Analysis Code Generation. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.14019030
  • Haase, R., Tischer, C., Bankhead, P., Miura, K., & Cimini, B. A. (2024). A Call for FAIR and Open-Access Training Materials to advance Bioimage Analysis.
  • Haase, R., Tischer, C., Hériché, J.-K., & Scherf, N. (2024). Benchmarking Large Language Models for Bio-Image Analysis Code Generation. bioRxiv, 2024–04. Cold Spring Harbor Laboratory.
  • Hahn, W., Ahmadi, N., Hoffmann, K., Eckardt, J.-N., Sedlmayr, M., & Wolfien, M. (2024). Synthetic Data Generation in Hematology - Paving the Way for OMOP and FHIR Integration. Studies in health technology and informatics, 316, 1472–1476. IOS Press, Amsterdam [u. a.].
  • Hanisch, P., & Krötzsch, M. (2024). Chase Termination Beyond Polynomial Time. Proc. ACM Manag. Data, 2(2), 1–17. New York, NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3651594
  • Hannemann, A., Ewald, J., Seeger, L., & Buchmann, E. (2024). Federated learning on transcriptomic data: Model quality and performance trade-offs. arXiv.
  • Hannemann, A., Friedl, B., & Buchmann, E. (2024). Differentially Private Multi-Label Learning Is Harder Than You’d Think. In 2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) (pp. 40–47).
  • Hannemann, A., Swaminathan, A., Ünal, A. B., & Akgün, M. (2024). Private, Efficient and Scalable Kernel Learning for Medical Image Analysis. Retrieved from https://arxiv.org/abs/2410.15840
  • Hannemann, M., Garc’ia-Garc’ia, A., Poyatos, R., Mahecha, M. D., & Peng, J. (2024). Estimating transpiration globally by integrating the Priestley-Taylor model with neural networks. Environ. Res. Lett., 19(11), 114089. IOP Publishing.
  • Hart, F., & Okhrin, O. (2024). Enhanced method for reinforcement learning based dynamic obstacle avoidance by assessment of collision risk. Neurocomputing, 568, 127097. Retrieved from https://www.sciencedirect.com/science/article/pii/S0925231223012201
  • Hart, F., Okhrin, O., & Treiber, M. (2024). Towards robust car-following based on deep reinforcement learning. Transportation Research Part C: Emerging Technologies, 159, 104486.
  • Hart, F., Waltz, M., & Okhrin, O. (2024). Two-step dynamic obstacle avoidance. Knowledge-based systems, 302. Elsevier Science B.V.
  • Haustein, K., Zacher, H., Liebal, K., Eichholz, M., & Mühlhaus, U. (2024). Justice and urban transformation in light of accelerating climate change . Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/egusphere-egu24-12511
  • Heidrich, H. S. G., Irmai, J., & Andres, B. (2024). A 4-Approximation Algorithm for Min Max Correlation Clustering. In Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research (pp. 1945–1953). Cambridge MA: JMLR.
  • Heine, A.-M., & Ulbricht, M. (2024). From Acceptance to Rejection in Abstract Argumentation. In Proc. KR.
  • Heineking, S., Probst, J., Steinbach, D., Potthast, M., & Scells, H. (2024). Ranking Generated Answers: On the Agreement of Retrieval Models with Humans on Consumer Health Questions. Retrieved from https://arxiv.org/abs/2408.09831
  • Heins, J., Schäpermeier, L., Kerschke, P., & Whitley, D. (2024). Dancing to the State of the Art? How Candidate Lists Influence LKH for Solving the Traveling Salesperson Problem. Retrieved from https://arxiv.org/abs/2407.03927
  • Heins, J., Schäpermeier, L., Kerschke, P., & Whitley, D. (2024). Dancing to the State of the Art?: How Candidate Lists Influence LKH for Solving the Traveling Salesperson Problem. In M. Affenzeller, S. M. Winkler, A. V. Kononova, T. Bäck, H. Trautmann, T. Tuv sar, & P. Machado (Eds.), Parallel Problem Solving from Nature – PPSN XVIII, Lecture Notes in Computer Science (pp. 100–115). Springer, Berlin [u. a.].
  • Heinz, C. N., Echle, A., Foersch, S., Bychkov, A., & Kather, J. N. (2022). The future of artificial intelligence in digital pathology - results of a survey across stakeholder groups. Histopathology, 80(7), 1121–1127. Wiley.
  • Hellmuth, M., Korchmaros, A., Ramírez-Rafael, J. A., Schmidt, B., Stadler, P. F., & Thekkumpadan Puthiyaveedu, S. (2024). Partial Fitch Graphs: Characterization, Satisfiability and Complexity. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2024.04.30.591842
  • Hellmuth, M., & Stadler, P. F. (2024). The theory of gene family histories. In Comparative Genomics: Methods and Protocols (pp. 1–32). Springer.
  • Hendriksen, G., Dinzinger, M., Farzana, S. M., Fathima, N. A., Fröbe, M., Schmidt, S., Zerhoudi, S., et al. (2024). The Open Web Index: Crawling and Indexing the Web for Public Use. In Advances in Information Retrieval. 46th European Conference on IR Research (ECIR 2024), Lecture Notes in Computer Science. Berlin Heidelberg New York: Springer.
  • Hermanns, H., Lauber-Rönsberg, A., Meinel, P., Sterz, S., & Zhang, H. (2024). AI Act for the Working Programmer. Retrieved from https://arxiv.org/abs/2408.01449
  • Herrmann, L., & Mörbitz, R. (2024). Global One-Counter Tree Automata. In S. Z. Fazekas (Ed.), 28th International Conference on Implementation and Application of Automata (CIAA 2024), Lecture Notes in Computer Science (Vol. 15015, pp. 166–179). Springer.
  • Herrmann, L., & Osterholzer, J. (2024). Non-Global Parikh Tree Automata. Retrieved from https://arxiv.org/abs/2409.06973
  • Herrmann, L., Peth, V., & Rudolph, S. (2024). Decidable (Ac)counting with Parikh and Muller: Adding Presburger Arithmetic to Monadic Second-Order Logic over Tree-Interpretable Structures. In A. Murano & A. Silva (Eds.), 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024), Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 288, pp. 33:1–33:19). Dagstuhl, Germany: Schloss Dagstuhl -- Leibniz-Zentrum für Informatik. Retrieved from https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.33
  • Herzog, N., Vähäsarja, L. E. J., Reinfeld, P., Scherf, N., Hofmann, S. M., Andreou, C., Villringer, A., et al. (2024). From Surface to Depth: using deep learning to predict striatal fMRI reward signaling in the EEG. OSF.
  • Hofer, M., Frey, J., & Rahm, E. (2024). Towards self-configuring knowledge graph construction pipelines using llms-a case study with rml. In Fifth International Workshop on Knowledge Graph Construction@ ESWC2024.
  • Hofer, M., Obraczka, D., Saeedi, A., Köpcke, H., & Rahm, E. (2024). Construction of Knowledge Graphs: Current state and challenges. Information (Basel), 15(8), 509. MDPI AG.
  • Hoffmann, A., Lorenz, C., Fallmann, J., Wolff, P., Lechner, A., Betat, H., Mörl, M., et al. (2024). Temperature-Dependent tRNA Modifications in Bacillales. International Journal of Molecular Sciences, 25(16), 8823. MDPI.
  • Hoffmann, K., Nesterow, I., Peng, Y., Henke, E., Barnett, D., Klengel, C., Gruhl, M., et al. (2024). Streamlining intersectoral provision of real-world health data: a service platform for improved clinical research and patient care. Frontiers in medicine, 11, 1377209. Frontiers Media S.A.
  • Hoffmann, K., Peng, Y., Schlosser, T., Stolze, G., Langner, H., Susky, M., Meyer, T., et al. (2024). Towards Standardizing Ophthalmic Data for Seamless Interoperability in Eye Care. Studies in health technology and informatics, 317, 139–145. IOS Press, Amsterdam [u. a.].
  • Hoffmann, M., & Buchmann, E. (2024). ChatSEC - Towards Enhancing Security Vulnerability Reports for Non-Experts. In Proceedings of the 11th Workshop ``Mensch-Maschine-Interaktion in sicherheitskritischen Systemen’’ - Mensch und Computer (MuC’24).
  • Hoffmann, M., & Buchmann, E. (2024). ChatSEC: Spicing up Vulnerability Scans with AI for Heterogeneous University IT - Towards Enhancing Security Vulnerability Reports for Non-Experts. In Proceedings of the 1st International Conference on AI-based Systems and Services (AISyS’24).
  • Hofmann, S. M., Ciston, A., Koushik, A., Klotzsche, F., Hebart, M. N., Müller, K.-R., Villringer, A., et al. (2024). Human-aligned deep and sparse encoding models of dynamic 3D face similarity perception. OSF.
  • Hofmann, S. M., Goltermann, O., Scherf, N., Mueller, K.-R., Loeffler, M., Villringer, A., Gaebler, M., et al. (2024). The utility of explainable AI for MRI analysis: Relating model predictions to neuroimaging features of the aging brain. bioRxiv, 2024–09. Cold Spring Harbor Laboratory.
  • Hofmann, S. M., Goltermann, O., Scherf, N., Müller, K.-R., Löffler, M., Villringer, A., Gaebler, M., et al. (2024). The utility of explainable A.I. for MRI analysis: Relating model predictions to neuroimaging features of the aging brain. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2024.09.27.615357
  • Huang, J., Vogginger, B., Kelber, F., Gonzalez, H., Knobloch, K., & Mayr, C. G. (2024). Fast Switching Serial and Parallel Paradigms of SNN Inference on Multi-core Heterogeneous Neuromorphic Platform SpiNNaker2. Retrieved from https://arxiv.org/abs/2406.17049
  • Hudecek, M., Rafiq, Q., Goldrick, S., Koehl, U., Negre, H., & Sanges, C. (2024). Innovations in Development, Translational Research and Manufacturing of CAR T cells. Frontiers Media SA.
  • Huemer, M.-T., Bauer, A., Petrera, A., Scholz, M., Hauck, S. M., Drey, M., Peters, A., et al. (2021). Proteomic profiling of low muscle and high fat mass: a machine learning approach in the KORA S4/FF4 study. J. Cachexia Sarcopenia Muscle, 12(4), 1011–1023. Wiley.
  • Hummel, S. (Ed.). (2024). Empowering Education in Cambodia and Sri Lanka: Advancing Quality in 21st Century Teaching and Learning. Doing Higher Education, Doing Higher Education. Germany: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Hummel, S. (2024). Embodied Teaching: Corporeal Expressiveness in Classroom Communication. Germany: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Hummel, S., Abbas, S. H., Wadhwa, G., & Donner, M.-T. (2024). Trustworthy AI-Mentors: Combining Large Language Models and Core NLP Techniques for Secure Learning Support. In . Retrieved from https://tu-dresden.de/codip/ergebnisse-transfer/veranstaltungen/geneme
  • Hummel, S., Aldrian, S., & Sheehan, B. (2024). Culture, Education and Digital Transformation in Sri Lanka. In S. Hummel (Ed.), Empowering Education in Cambodia and Sri Lanka: Advancing Quality in 21st Century Teaching and Learning, Doing Higher Education (pp. 9–29). Germany: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Hummel, S., Bohlinger, S., & Sheehan, B. (2024). Modern Pedagogies in the Digital Era: Elevating Educational Standards in Teacher Education. In S. Hummel (Ed.), Empowering Education in Cambodia and Sri Lanka: Advancing Quality in 21st Century Teaching and Learning, Doing Higher Education (pp. 67–78). Germany: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Hummel, S., Bohlinger, S., & Sheehan, B. (2024). Empowering Education in Cambodia and Sri Lanka: Quality Improvement in Teaching and Learning in the 21st Century. (S. Hummel, Ed.)Empowering Education in Cambodia and Sri Lanka: Quality Improvement in Teaching and Learning in the 21st Century (pp. 65–76). Wiesbaden: Springer Fachmedien Wiesbaden. Retrieved from https://doi.org/10.1007/978-3-658-43306-2
  • Hummel, S., Brodacz-Geier, M., & Sheehan, B. (2024). Pedagogical Professionalization in Digital Contexts. In S. Hummel (Ed.), Empowering Education in Cambodia and Sri Lanka: Advancing Quality in 21st Century Teaching and Learning, Doing Higher Education (pp. 205–221). Germany: SPRINGER VS/SPRINGER FACHMEDIEN.
  • Hummel, S., & Donner, M.-T. (2024). Digital Companions for Learners: Design Principles for AI Assistants in Education. In . Retrieved from https://pce.iafor.org/pce2024/
  • Hummel, S., & Donner, M.-T. (2024). Motivational Dynamics in AI-Enhanced Education: Unveiling Student Perspectives. In . Retrieved from https://ece.iafor.org/ece2024/
  • Hummel, S., & Donner, M.-T. (2024). The Dual Impact of AI in Academia: From Deskilling Risks to Upskilling Opportunities. In . Retrieved from https://arqus-alliance.eu/event/online-teaching-innovation-workshop-impact-ai/
  • Hummel, S., & Donner, M.-T. (2024). Student Needs and the Role of AI Mentors in Higher Education. In . Retrieved from https://ece.iafor.org/ece2024/
  • Hummel, S., & Donner, M.-T. (2024). Teaching Innovation Workshop: Skill Transformation in AI-Enhanced Education. In . Retrieved from https://arqus-alliance.eu/event/online-teaching-innovation-workshop-skill-transformation-in-ai-enhanced-education/
  • Hummel, S., & Donner, M.-T. (2024). Motivational Impacts of AI on Student Learning. In . Retrieved from https://pce.iafor.org/pce2024/
  • Hummel, S., Donner, M.-T., Abbas, S. H., & Wadhwa, G. (2024). Gestaltungsmerkmale KI-basierter Avatare zur Förderung selbstregulierten Lernens: Eine empirische Analyse. In . Retrieved from https://tu-dresden.de/codip/ergebnisse-transfer/veranstaltungen/geneme
  • Hummel, S., Wadhwa, G., Abbas, S. H., & Donner, M.-T. (2024). AI-Based-Personalized Learning in Higher Education: From Tracing Learning Processes to Providing Tailored Educational Support. In . Retrieved from https://tu-dresden.de/codip/ergebnisse-transfer/veranstaltungen/geneme
  • Hummel, S., Wadhwa, G., Abbas, S. H., & Donner, M.-T. (2024). Secure and Effective AI-based Learning Systems: Integrating Federated Learning and Large Language Models for Privacy-Preservation in Education. In . Retrieved from https://tu-dresden.de/codip/ergebnisse-transfer/veranstaltungen/geneme
  • Ionescu, B., Müller, H., Druagulinescu, A. M., Idrissi-Yaghir, A., Radzhabov, A., Herrera, A. G. S. de, Andrei, A., et al. (2024). Advancing Multimedia Retrieval in Medical, Social Media and Content Recommendation Applications with ImageCLEF 2024. In N. Goharian, N. Tonellotto, Y. He, A. Lipani, G. McDonald, C. Macdonald, & I. Ounis (Eds.), Advances in Information Retrieval (pp. 44–52). Cham: Springer Nature Switzerland.
  • Ionescu, B., Müller, H., Drȃgulinescu, A.-M., Rückert, J., Abacha, A. B., García, A., de Herrera, S., et al. (2024). Overview of the ImageCLEF 2024: Multimedia retrieval in medical applications. In Conference and Labs of the Evaluation Forum (CLEF 2024). Grenoble, France. Retrieved from https://hal.science/hal-04743962
  • Irmai, J., Zhao, S., Schöne, M., Presberger, J., & Andres, B. (2024). A Graph Multi-separator Problem for Image Segmentation. Journal of Mathematical Imaging and Vision, 66(5), 839–872. Retrieved from https://doi.org/10.1007/s10851-024-01201-1
  • Ivliev, A., Gerlach, L., Meusel, S., Steinberg, J., & Krötzsch, M. (2024). Nemo: Your Friendly and Versatile Rule Reasoning Toolkit. In Proceedings of the TwentyFirst International Conference on Principles of Knowledge Representation and Reasoning, KR-2024 (pp. 743–754). International Joint Conferences on Artificial Intelligence Organization. Retrieved from http://dx.doi.org/10.24963/kr.2024/70
  • Ivliev, A., Gerlach, L., Meusel, S., Steinberg, J., & Krötzsch, M. (2024). Nemo: A Scalable and Versatile Datalog Engine. In M. Alviano & M. Lanzinger (Eds.), Proceedings of the 5th International Workshop on the Resurgence of Datalog in Academia and Industry (Datalog-2.0 2024), CEUR Workshop Proceedings (Vol. 3801, pp. 43–47). CEUR-WS.org.
  • Ji, C., Fincke, T., Benson, V., Camps-Valls, G., Fernandez-Torres, M.-A., Gans, F., Kraemer, G., et al. (2024). DeepExtremeCubes: Integrating Earth system spatio-temporal data for impact assessment of climate extremes. arXiv preprint arXiv:2406.18179.
  • Jiang, H., Okhrin, O., & Rockinger, M. (2024). Artificial neural network small-sample-bias-corrections of the AR(1) parameter close to unit root. Statistica Neerlandica. Wiley-Blackwell, Oxford [u. a.].
  • Jiang, S., Su, Z., Bloodworth, N., Liu, Y., Martina, C., Harrison, D. G., & Meiler, J. (2024). Machine learning application to predict binding affinity between peptide containing non-canonical amino acids and HLA0201. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2024.11.19.624425
  • Jiang, S., Sweet, L., Blougouras, G., Brenning, A., Li, W., Reichstein, M., Denzler, J., et al. (2024). How Interpretable Machine Learning Can Benefit Process Understanding in the Geosciences. Earth’s Future, 12(7). American Geophysical Union (AGU). Retrieved from http://dx.doi.org/10.1029/2024EF004540
  • Jiang, S., Tarasova, L., Yu, G., & Zscheischler, J. (2024). Compounding effects in flood drivers challenge estimates of extreme river floods. Science advances, 10(13). American Association for the Advancement of Science (AAAS), New York.
  • Johnson, I., & Roldan, E. (2024). Solution Numbers for Eight Blocks to Madness Puzzle. Retrieved from https://arxiv.org/abs/2407.13208
  • Jones, C. A. H., Brown, B. P., Schultz, D. C., Engers, J., Kramlinger, V. M., Meiler, J., & Lindsley, C. W. (2024). Computer-Aided Design and Biological Evaluation of Diazaspirocyclic D4R Antagonists. ACS Chemical Neuroscience, 15(12), 2396–2407. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.1021/acschemneuro.4c00086
  • Jüttner, V., Fleig, A., & Buchmann, E. (2024). ChatAnalysis: Can GPT-4 Undermine Privacy in Smart Homes with Data Analysis?. In Proceedings of the 11th Workshop ``Mensch-Maschine-Interaktion in sicherheitskritischen Systemen’’ - Mensch und Computer (MuC’24).
  • Jurenaite, N., León-Periñán, D., Donath, V., Torge, S., & Jäkel, R. (2024). SetQuence & SetOmic: Deep Set Transformers for Whole Genome and Exome Tumour Analysis. BioSystems, 235, 105095. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.biosystems.2023.105095
  • Jurenaite, N., León-Periñán, D., Donath, V., Torge, S., & Jäkel, R. (2024). SetQuence & SetOmic: Deep set transformers for whole genome and exome tumour analysis. BioSystems, 235. Elsevier.
  • Katalinic, M., Schenk, M., Franke, S., Katalinic, A., Neumuth, T., Dietz, A., Stoehr, M., et al. (2024). Generation of a Realistic Synthetic Laryngeal Cancer Cohort for AI Applications. Cancers, 16(3), 639. MDPI AG. Retrieved from http://dx.doi.org/10.3390/cancers16030639
  • Kattenborn, T., Mosig, C., Pratima, K., Frey, J., Perez-Priego, O., Schiefer, F., Cheng, Y., et al. (2024). deadtrees.earth - an open, dynamic database for accessing, contributing, analyzing, and visualizing remote sensing-based tree mortality data, (EGU24-15502).
  • Kattenborn, T., Wieneke, S., Montero, D., Mahecha, M. D., Richter, R., Guimarães-Steinicke, C., Wirth, C., et al. (2024). Temporal dynamics in vertical leaf angles can confound vegetation indices widely used in Earth observations. Communications Earth & Environment, 5(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1038/s43247-024-01712-0
  • Kayacan, O., & Middendorf, M. (2024). The effect of lookahead on phase transition in migration of three species with cyclic predator–prey relations. Journal of Statistical Mechanics: Theory and Experiment, 2024(2), 023212. IOP Publishing. Retrieved from http://dx.doi.org/10.1088/1742-5468/ad2922
  • Kestemont, M., Manjavacas, E., Markov, I., Bevendorff, J., Wiegmann, M., Stamatatos, E., Stein, B., et al. (2021). Overview of the cross-domain authorship verification task at PAN 2021. In G. Faggioli, N. Ferro, A. Joly, M. Maistro, & F. Piroi (Eds.), CLEF-WN 2021 - Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings (Vol. 2936, pp. 1743–1759). CEUR-WS.
  • Khan, A. A., De Lima, J. P. C., Farzaneh, H., & Castrillon, J. (2024). The landscape of compute-near-memory and compute-in-memory: A research and commercial overview. arXiv.
  • Kiesel, J., cCöltekin, cCaugri, Heinrich, M., Fröbe, M., Alshomary, M., De Longueville, B., Erjavec, T., et al. (2024). Overview of Touché 2024: Argumentation Systems. In Advances in Information Retrieval: 46th European Conference on Information Retrieval, ECIR 2024, Glasgow, UK, March 24–28, 2024, Proceedings, Part V (pp. 466–473). Glasgow, United Kingdom: Springer-Verlag. Retrieved from https://doi.org/10.1007/978-3-031-56069-9_64
  • Kiesel, J., Çöltekin, Çaugri, Heinrich, M., Fröbe, M., Alshomary, M., De Longueville, B., Erjavec, T., et al. (2024). Overview of Touché 2024: Argumentation Systems.
  • Kirveslahti, H., & Mukherjee, S. (2024). Representing fields without correspondences: the lifted Euler characteristic transform. J. Appl. Comput. Topol., 8(1), 1–34. Springer Science and Business Media LLC.
  • Klein, A., Golebiowski, J., Ma, X., Perrone, V., & Archambeau, C. (2024). Structural Pruning of Pre-trained Language Models via Neural Architecture Search. Retrieved from https://arxiv.org/abs/2405.02267
  • Klotz, D., Gauch, M., Kratzert, F., Nearing, G., & Zscheischler, J. (2024). Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions. Hydrology and Earth System Sciences, 28(15), 3665–3673. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/hess-28-3665-2024
  • Knutzen, F., Averbeck, P., Barrasso, C., Bouwer, L. M., Gardiner, B., Grünzweig, J. M., Hänel, S., et al. (2023). Impacts and damages of the European multi-year drought and heat event 2018–2022 on forests, a review.
  • Köhler, J., Varga, E., Spahr, S., Gessner, J., Stelzer, K., Brandt, G., Mahecha, M. D., et al. (2024). Unpredicted ecosystem response to compound human impacts in a European river. Scientific Reports, 14(1), 16445. Retrieved from https://doi.org/10.1038/s41598-024-66943-9
  • Kosakin, D., Obiedkov, S., Smirnov, I., Rakhilina, E., Vyrenkova, A., & Zalivina, E. (2024). Russian Learner Corpus: Towards Error-Cause Annotation for L2 Russian. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 14240–14258). Torino, Italia: ELRA and ICCL. Retrieved from https://aclanthology.org/2024.lrec-main.1241
  • Krajsic, P., Suess, V., Cao, Z., Kowalczyk, R., & Franczyk, B. (2024). Trends, Advancements and Challenges in Intelligent Optimization in Satellite Communication. Retrieved from https://arxiv.org/abs/2410.03674
  • Kramm, A., Peukert, E., Ludwig, A., & Franczyk, B. (2024). Machine Learning Based Mobile Capacity Estimation for Roadside Parking. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 99–106. Copernicus GmbH.
  • Kriegel, F. (2024). Efficient Axiomatization of OWL 2 EL Ontologies from Data by means of Formal Concept Analysis (Extended Abstract). In L. Giordano, J. C. Jung, & A. Ozaki (Eds.), Proceedings of the 37th International Workshop on Description Logics (DL 2024), June 18--21, 2024, Bergen, Norway, CEUR Workshop Proceedings. RTWH Aachen.
  • Krug, K., Méndez, J., Luo, W., & Dachselt, R. (2024). Don’t Leave Me Out: Designing for Device Inclusivity in Mixed Reality Collaboration. arXiv preprint arXiv:2409.05374.
  • Kuang, X., su, zhaoqian, Liu, Y., Lin, X., Smith, J. S., Derr, T., Wu, Y., et al. (2024). SuperWater: Predicting Water Molecule Positions on Protein Structures by Generative AI. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2024.11.18.624208
  • Küchenmeister, N., Ivliev, A., & Krötzsch, M. (2024). Towards Mass Spectrum Analysis with ASP. In Logic Programming and Nonmonotonic Reasoning (pp. 200–214). Springer Nature Switzerland. Retrieved from http://dx.doi.org/10.1007/978-3-031-74209-5_16
  • Küchenmeister, N., Ivliev, A., & Krötzsch, M. (2024). Towards Mass Spectrum Analysis with ASP. In (pp. 200–214).
  • Kukushkin, M., Bogdan, M., & Schmid, T. (2024). BiMAE - A Bimodal Masked Autoencoder Architecture for Single-Label Hyperspectral Image Classification. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Workshops, Seattle, WA, USA, June 17-18, 2024 (pp. 2987–2996). IEEE.
  • Kukushkin, M., Bogdan, M., & Schmid, T. (2024). BiCAE -- A Bimodal Convolutional Autoencoder for Seed Purity Testing. In A. Bifet, T. Krilavivcius, I. Miliou, & S. Nowaczyk (Eds.), Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (pp. 447–462). Cham: Springer Nature Switzerland.
  • Kukushkin, M., Bogdan, M., & Schmid, T. (2024). On optimizing morphological neural networks for hyperspectral image classification. In W. Osten (Ed.), Sixteenth International Conference on Machine Vision (ICMV 2023) (Vol. 13072, p. 1307202). SPIE. Retrieved from https://doi.org/10.1117/12.3023593
  • Kulkarni, M. M., Chaudhari, A. A., Srinivasan, K. K., Chilukuri, B. R., Treiber, M., & Okhrin, O. (2024). Leader-Follower Identification with Vehicle-Following Calibration for Non-Lane-Based Traffic.
  • Kumar, N., Krause, L., Wondrak, T., Eckert, S., Eckert, K., & Gumhold, S. (2024). Robust Reconstruction of the Void Fraction from Noisy Magnetic Flux Density Using Invertible Neural Networks. Sensors, 24(4). Retrieved from https://www.mdpi.com/1424-8220/24/4/1213
  • Kumar, N., Tao, Z., Singh, J., Li, Y., Sun, P., Zhao, B., & Gumhold, S. (2024). FusionINN: Invertible Image Fusion for Brain Tumor Monitoring. arXiv preprint arXiv:2403.15769.
  • Kutz, M. (2024). Der Tragödie erster Teil?. Ethik und Gesellschaft, Nr. 1 (2024): Ge|teilte Wirklichkeit. Ethik und Gesellschaft. Retrieved from https://ethik-und-gesellschaft.de/ojs/index.php/eug/article/view/1391
  • Lange, L., Heykeroth, M.-M., & Rahm, E. (2024). Assessing the Impact of Image Dataset Features on Privacy-Preserving Machine Learning. arXiv preprint arXiv:2409.01329. arXiv.
  • Lange, L., Wenzlitschke, N., & Rahm, E. (2024). Generating Synthetic Health Sensor Data for Privacy-Preserving Wearable Stress Detection. Sensors, 24(10), 3052. MDPI.
  • Lange, M., Granados, A., VijayKumar, S., Bragantini, J., Ancheta, S., Kim, Y.-J., Santhosh, S., et al. (2024). A multimodal zebrafish developmental atlas reveals the state-transition dynamics of late-vertebrate pluripotent axial progenitors. Cell, 187(23), 6742–6759. Elsevier.
  • Lange, M., Granados, A., VijayKumar, S., Bragantini, J., Ancheta, S., Kim, Y.-J., Santhosh, S., et al. (2024). A multimodal zebrafish developmental atlas reveals the state-transition dynamics of late-vertebrate pluripotent axial progenitors. Cell, 187(23), 6742–6759. Elsevier.
  • Lehmann, J., Meloni, A., Motta, E., Osborne, F., Recupero, D. R., Salatino, A. A., & Vahdati, S. (2024). Large Language Models for Scientific Question Answering: An Extensive Analysis of the SciQA Benchmark. In The Semantic Web. ESWC 2024. Lecture Notes in Computer Science (Vol. 14664, pp. 199–217). Cham: Springer. Retrieved from https://oro.open.ac.uk/98409/
  • Lehtonen, T., Rapberger, A., Toni, F., Ulbricht, M., & Wallner, J. P. (2024). Instantiations and computational aspects of non-flat assumption-based argumentation. arXiv.
  • Lehtonen, T., Rapberger, A., Toni, F., Ulbricht, M., & Wallner, J. P. (2024). On Computing Admissibility in ABA. In Proc. COMMA.
  • Lenhardt, J., Quaas, J., & Sejdinovic, D. (2024). Marine cloud base height retrieval from MODIS cloud properties using machine learning. Atmospheric Measurement Techniques, to appear. Retrieved from https://egusphere.copernicus.org/preprints/2024/egusphere-2024-327/
  • Lenhardt, J., Quaas, J., & Sejdinovic, D. (2024). Marine cloud base height retrieval from MODIS cloud properties using machine learning. Atmospheric Measurement Techniques, 17(18), 5655–5677. Copernicus Publications.
  • Lenhardt, J., Quaas, J., Sejdinovic, D., & Klocke, D. (2024). CloudViT: classifying cloud types in global satellite data and in kilometre-resolution simulations using vision transformers. EGUsphere, 2024, 1–31. Copernicus Publications.
  • Lenhardt, J., Quaas, J., Sejdinovic, D., & Klocke, D. (2024). Leveraging surface observations and passive satellite retrievals of cloud properties: Applications to cloud type classification and cloud base height retrieval, (EGU24-18214). Copernicus Meetings.
  • Li, D., Auerbach, P., & Okhrin, O. (2024). Towards Autonomous Driving with Small-Scale Cars: A Survey of Recent Development.
  • Li, D., & Okhrin, O. (2024). A platform-agnostic deep reinforcement learning framework for effective Sim2Real transfer towards autonomous driving. Commun Eng, 3(1), 147. Springer Science and Business Media LLC.
  • Li, N., Thiery, W., Zscheischler, J., Messori, G., Guillou, L., Nivre, J., Görnerup, O., et al. (2024). A new climate impact database using generative AI. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/egusphere-egu24-677
  • Li, N., Zahra, S., Brito, M., Flynn, C., Görnerup, O., Worou, K., Kurfali, M., et al. (2024). Using LLMs to Build a Database of Climate Extreme Impacts. In Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024) (pp. 93–110). Association for Computational Linguistics. Retrieved from http://dx.doi.org/10.18653/v1/2024.climatenlp-1.7
  • Liessmann, F., von Bredow, L., Meiler, J., & Liebscher, I. (2024). Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure. Elsevier.
  • Lindenmeyer, A., Blattmann, M., Franke, S., Neumuth, T., & Schneider, D. (2024). Inadequacy of common stochastic neural networks for reliable clinical decision support. Retrieved from https://arxiv.org/abs/2401.13657
  • Liou, N., De, T., Urbanski, A., Chieng, C., Kong, Q., David, A. L., Khasriya, R., et al. (2024). A clinical microscopy dataset to develop a deep learning diagnostic test for urinary tract infection. Scientific Data, 11(1), 155. Retrieved from https://doi.org/10.1038/s41597-024-02975-0
  • Liu, Y., Ullah, S., & Kumar, A. (2024). BitSys: Bitwise Systolic Array Architecture for Multi-precision Quantized Hardware Accelerators. In 2024 IEEE 32nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) (pp. 220–220).
  • Liu, Y. (Lance), Moretti, R., Wang, Y., Dong, H., Yan, B., Bodenheimer, B., Derr, T., et al. (2024). Advancements in Ligand-Based Virtual Screening through the Synergistic Integration of Graph Neural Networks and Expert-Crafted Descriptors. bioRxiv. Cold Spring Harbor Laboratory. Retrieved from https://www.biorxiv.org/content/early/2024/07/13/2023.04.17.537185
  • Llanos, E., Leal, W., Bernal, A., Jost, J., & Stadler, P. F. (2024). Are the chemical families still there? Formal structure of similarity of elements and its thermochemical domain. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 480(2298). The Royal Society. Retrieved from http://dx.doi.org/10.1098/rspa.2024.0165
  • Lorenz, M., Amorim, T., Dey, D., Sadeghi, M., & Ebel, P. (2024). Computational Models for In-Vehicle User Interface Design: A Systematic Literature Review. In Proceedings of the 16th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’24 (pp. 204–215). Stanford, CA, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3640792.3675735
  • Luccioni, A. S., Akiki, C., Mitchell, M., & Jernite, Y. (2024). Stable bias: evaluating societal representations in diffusion models. In Proceedings of the 37th International Conference on Neural Information Processing Systems, NIPS ’23. New Orleans, LA, USA: Curran Associates Inc.
  • Luppi, A. I., Olbrich, E., Finn, C., Suárez, L. E., Rosas, F. E., Mediano, P. A., & Jost, J. (2024). Quantifying synergy and redundancy between networks. Cell Reports Physical Science, 5(4), 101892. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.xcrp.2024.101892
  • Lutz, C., & Manière, Q. (2024, July). Adding Circumscription to Decidable Fragments of First-Order Logic: A Complexity Rollercoaster.
  • Lutz, C., & Schulze, L. (2024). Description Logics with Abstraction and Refinement: From ALC to EL. In Proceedings of the TwentyFirst International Conference on Principles of Knowledge Representation and Reasoning, KR-2024 (pp. 542–552). International Joint Conferences on Artificial Intelligence Organization. Retrieved from http://dx.doi.org/10.24963/kr.2024/51
  • Lyon, T. S., & Karge, J. (2024). Constructive Interpolation and Concept-Based Beth Definability for Description Logics via Sequents. Retrieved from https://arxiv.org/abs/2404.15840
  • Maack, R. G. C., Raith, F., Pérez, J. F., Scheuermann, G., & Gillmann, C. (2024). A workflow to systematically design uncertainty-aware visual analytics applications. The Visual Computer. Retrieved from https://doi.org/10.1007/s00371-024-03435-x
  • Mackay, E. B. L., Murphy-Barltrop, C. J. R., & Jonathan, P. (2024). The SPAR Model: A New Paradigm for Multivariate Extremes: Application to Joint Distributions of Metocean Variables. Journal of Offshore Mechanics and Arctic Engineering, 147(1). ASME International. Retrieved from http://dx.doi.org/10.1115/1.4065968
  • Mahecha, M. D., Bastos, A., Bohn, F. J., Eisenhauer, N., Feilhauer, H., Hickler, T., Kalesse‐Los, H., et al. (2024). Biodiversity and Climate Extremes: Known Interactions and Research Gaps. Earth’s Future, 12(6). American Geophysical Union (AGU). Retrieved from http://dx.doi.org/10.1029/2023EF003963
  • Maier-Hein, L., Reinke, A., Godau, P., Tizabi, M. D., Buettner, F., Christodoulou, E., Glocker, B., et al. (2024). Metrics reloaded: recommendations for image analysis validation. Nature methods, 21(2), 195–212. Nature Publishing Group US New York.
  • Maier-Hein, L., Reinke, A., Godau, P., Tizabi, M. D., Buettner, F., Christodoulou, E., Glocker, B., et al. (2024). Metrics reloaded: recommendations for image analysis validation. Nature methods, 21(2), 195–212. Nature Publishing Group US New York.
  • Mailach, A., Gorgosch, D., Siegmund, N., & Siegmund, J. (2024). ``Ok Pal, we have to code that now’’: interaction patterns of programming beginners with a conversational chatbot. Empirical Software Engineering, 30(1), 34. Retrieved from https://doi.org/10.1007/s10664-024-10561-6
  • Mailach, A., & Siegmund, N. (2024). Socio-Technical Challenges and Recommendations for Mitigation when Building ML-Enabled Systems. In Software Engineering 2024 (SE 2024) (pp. 87–88). Bonn: Gesellschaft für Informatik e.V.
  • Mailach, A., Simon, S., Dorn, J., & Siegmund, N. (2024). Practitioners’ Discussions on Building LLM-based Applications for Production. Retrieved from https://arxiv.org/abs/2411.08574
  • Mallik, N., Janowski, M., Hog, J., Rakotoarison, H., Klein, A., Grabocka, J., & Hutter, F. (2024). Warmstarting for Scaling Language Models. Retrieved from https://arxiv.org/abs/2411.07340
  • Manière, Q., & Przybylko, M. (2024). Spectra of Cardinality Queries over Description Logic Knowledge Bases (Extended Abstract). In L. Giordano, J. C. Jung, & A. Ozaki (Eds.), Proceedings of the 37th International Workshop on Description Logics (DL 2024), Bergen, Norway, June 18-21, 2024, CEUR Workshop Proceedings (Vol. 3739). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-3739/abstract-19.pdf
  • Maniero, R. A., Picco, C., Hartmann, A., Engelberger, F., Gradogna, A., Scholz-Starke, J., Melzer, M., et al. (2024). Ferric reduction by a CYBDOM protein counteracts increased iron availability in root meristems induced by phosphorus deficiency. Nature Communications, 15(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1038/s41467-023-43912-w
  • Martinuzzi, F., Mahecha, M. D., Camps-Valls, G., Montero, D., Williams, T., & Mora, K. (2024). Impact Predictability: Exploring Extremes in Biosphere Dynamics with Recurrent Neural Networks, (EGU24-9569). Copernicus Meetings.
  • Martinuzzi, F., Mahecha, M. D., Camps-Valls, G., Montero, D., Williams, T., & Mora, K. (2024). Learning extreme vegetation response to climate drivers with recurrent neural networks. Nonlinear Processes in Geophysics, 31(4), 535–557. Copernicus Publications.
  • Martinuzzi, F., Mahecha, M. D., Montero, D., Alonso, L., & Mora, K. (2024). SpectralIndices. jl: Streamlining spectral indices access and computation for Earth system research. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 89–95. Copernicus GmbH.
  • Marx, E., Witt, C., & Leonhardt, T. (2024). Identifying Secondary School Students’ Misconceptions about Machine Learning: An Interview Study. In WiPSCE ’24: Proceedings of the 19th WiPSCE Conference on Primary and Secondary Computing Education Research (pp. 1–10). Association for Computing Machinery.
  • Mathebula, D., Amankwah, A., Amouzouvi, K., Assamagan, K. A., Azote, S., Fajemisin, J. A., Fankam Fankame, J. B., et al. (2024). Modelling the impact of vaccination on COVID-19 in African countries. PLOS Computational Biology, 20(10), 1–26. Public Library of Science. Retrieved from https://doi.org/10.1371/journal.pcbi.1012456
  • Mausenberger, S., Müller, C., Tkatchenko, A., Marquetand, P., González, L., & Westermayr, J. (2024). SpaiNN: equivariant message passing for excited-state nonadiabatic molecular dynamics. Chem. Sci., 15(38), 15880–15890. The Royal Society of Chemistry. Retrieved from http://dx.doi.org/10.1039/D4SC04164J
  • McDonald, E. F., Oliver, K. E., Schlebach, J. P., Meiler, J., & Plate, L. (2024). Benchmarking AlphaMissense pathogenicity predictions against cystic fibrosis variants. (J. L. Brodsky, Ed.)PLOS ONE, 19(1), e0297560. Public Library of Science (PLoS). Retrieved from http://dx.doi.org/10.1371/journal.pone.0297560
  • Mederer, D., Feilhauer, H., Cherif, E., Berger, K., Hank, T. B., Kovach, K. R., Dao, P. D., et al. (2024). Plant trait retrieval from hyperspectral data: Collective efforts in scientific data curation outperform simulated data derived from the PROSAIL model. ISPRS Open Journal of Photogrammetry and Remote Sensing, 100080. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.ophoto.2024.100080
  • Mehrdad, S., Handorf, D., Höschel, I., Karami, K., Quaas, J., Dipu, S., & Jacobi, C. (2024). Arctic Climate Response to European Radiative Forcing: A Deep Learning Approach. EGUsphere, 2024, 1–55. Retrieved from https://egusphere.copernicus.org/preprints/2024/egusphere-2023-3033/
  • Mehrdad, S., Handorf, D., Höschel, I., Karami, K., Quaas, J., Dipu, S., & Jacobi, C. (2024). Arctic Climate Response to European Radiative Forcing: A Deep Learning Approach. EGUsphere, 2024, 1–55. Copernicus Publications.
  • Mehrdad, S., Handorf, D., Höschel, I., Karami, K., Quaas, J., Dipu, S., & Jacobi, C. (2024). Arctic climate response to European radiative forcing: a deep learning study on circulation pattern changes. Weather and Climate Dynamics, 5(4), 1223–1268. Copernicus Publications.
  • Mehrdad, S., Handorf, D., Höschel, I., Karami, K., Quaas, J., Dipu, S., & Jacobi, C. (2024). A Physics-informed Deep Learning Based Clustering to Investigate the Impact of Regional European Radiative Forcing on Arctic Climate and Upper Atmospheric Dynamics, (EGU24-16391). Copernicus Meetings.
  • Melancon, K., Pliushcheuskaya, P., Meiler, J., & Künze, G. (2024). Targeting ion channels with ultra-large library screening for hit discovery. Frontiers in Molecular Neuroscience, 16. Frontiers Media SA. Retrieved from http://dx.doi.org/10.3389/fnmol.2023.1336004
  • Mihindukulasooriya, N., Dubey, M., Gliozzo, A., Lehmann, J., Ngomo, A.-C. N., & Usbeck, R. (2021). SeMantic AnsweR Type prediction task (SMART) at ISWC 2020 Semantic Web Challenge. arXiv.
  • Milosevic, N., Müller, J., & Scherf, N. (2024). Embedding Safety into RL: A New Take on Trust Region Methods. Retrieved from https://arxiv.org/abs/2411.02957
  • Milosevic, N., M�ller, G., Huisken, J., & Scherf, N. (2024). Open Problem: Active Representation Learning. Retrieved from https://arxiv.org/abs/2406.03845
  • Möhring, J., Mosig, C., Cheng, Y., Mahecha, M., Priego, O. P., Beloiu, M., Volpi, M., et al. (2024). Delineating Standing Deadwood in High-Resolution RGB Drone Imagery, (EGU24-19025).
  • Moeller, J., Bozhanova, N. G., Voehler, M., Meiler, J., & Schoeder, C. T. (2024). Backbone chemical shift and secondary structure assignments for mouse siderocalin. Biomolecular NMR Assignments, 18(1), 79–84. Springer.
  • Molinari, C., Solaini, L., Rebuzzi, F., Tedaldi, G., Angeli, D., Petracci, E., Prascevic, D., et al. (2024). Genomic events stratifying prognosis of early gastric cancer. Gastric Cancer, 1–12. Springer.
  • Montero, D., Aybar, C., Ji, C., Kraemer, G., Söchting, M., Teber, K., & Mahecha, M. D. (2024). On-Demand Earth System Data Cubes. In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 7529–7532). IEEE. Retrieved from http://dx.doi.org/10.1109/IGARSS53475.2024.10640742
  • Montero, D., Kraemer, G., Anghelea, A., Aybar, C., Brandt, G., Camps-Valls, G., Cremer, F., et al. (2024). Earth System Data Cubes: Avenues for advancing Earth system research. arXiv preprint arXiv:2408.02348.
  • Montero, D., Mahecha, M. D., Aybar, C., Mosig, C., & Wieneke, S. (2024). Facilitating advanced Sentinel-2 analysis through a simplified computation of Nadir BRDF Adjusted Reflectance. arXiv preprint arXiv:2404.15812.
  • Montero, D., Mahecha, M. D., Martinuzzi, F., Aybar, C., Klosterhalfen, A., Knohl, A., Koebsch, F., et al. (2024). Recurrent Neural Networks for Modelling Gross Primary Production, 4214–4217. IEEE.
  • Montero, D., Mahecha, M. D., Martinuzzi, F., Aybar, C., Klosterhalfen, A., Knohl, A., Koebsch, F., et al. (2024). Estimating Gross Primary Production via Recurrent Neural Networks: A comparative analysis, (EGU24-6773). Copernicus Meetings.
  • Mora, K., Rzanny, M., Wäldchen, J., Feilhauer, H., Kattenborn, T., Kraemer, G., Mäder, P., et al. (2024). Plant macrophenological dynamics -from individuals to plant group behaviour using citizen science data. In .
  • Mora, K., Rzanny, M., Wäldchen, J., Feilhauer, H., Kattenborn, T., Kraemer, G., Mäder, P., et al. (2024). Macrophenological dynamics from citizen science plant occurrence data. Methods in Ecology and Evolution, 15(8), 1422–1437. Wiley. Retrieved from http://dx.doi.org/10.1111/2041-210X.14365
  • Mosig, C., Mahecha, M., Montero, D., Cheng, Y., Priego, O. P., Beloiu, M., Volpi, M., et al. (2024). Mapping Tree Mortality at Global Scale Using Sentinel-2, (EGU24-18230).
  • Mosig, C., Vajna-Jehle, J., Mahecha, M. D., Cheng, Y., Hartmann, H., Montero, D., Junttila, S., et al. (2024). deadtrees. earth-An Open-Access and Interactive Database for Centimeter-Scale Aerial Imagery to Uncover Global Tree Mortality Dynamics. bioRxiv, 2024.10. 18.619094. Cold Spring Harbor Laboratory.
  • Mosig, C., Vajna-Jehle, J., Mahecha, M. D., Cheng, Y., Hartmann, H., Montero, D., Junttila, S., et al. (2024). deadtrees. earth-An Open-Access and Interactive Database for Centimeter-Scale Aerial Imagery to Uncover Global Tree Mortality Dynamics. bioRxiv, 2024–10. Cold Spring Harbor Laboratory.
  • Moth, C. W., Sheehan, J. H., Mamun, A. A., Sivley, R. M., Gulsevin, A., Rinker, D., Capra, J. A., et al. (2024). VUStruct: a compute pipeline for high throughput and personalized structural biology. Cold Spring Harbor Laboratory. Retrieved from http://dx.doi.org/10.1101/2024.08.06.606224
  • Mühlbauer, S., Sattler, F., Kaltenecker, C., Dorn, J., Apel, S., & Siegmund, N. (2024). Performance Sensitivity Across Configuration and Workload. Gesellschaft für Informatik e.V. Retrieved from https://dl.gi.de/handle/20.500.12116/43579
  • Müller, A., Schmidt, D., Albrecht, J. P., Rieckert, L., Otto, M., Galicia Garcia, L. E., Fabig, G., et al. (2024). Modular segmentation, spatial analysis and visualization of volume electron microscopy datasets. Nature protocols, 19(5), 1436–1466. Nature Publishing Group.
  • Mukherji, R., Schöne, M., Nazeer, K. K., Mayr, C., Kappel, D., & Subramoney, A. (2024). Weight Sparsity Complements Activity Sparsity in Neuromorphic Language Models.
  • Murphy-Barltrop, C. J. R., Wadsworth, J. L., & Eastoe, E. F. (2024). Improving estimation for asymptotically independent bivariate extremes via global estimators for the angular dependence function. Extremes : statistical theory and applications in science, engineering and economics, 27(4). Springer Science + Business Media, Dordrecht.
  • Murphy-Barltrop, C., & Wadsworth, J. (2024). Modelling Non-Stationarity in Asymptotically Independent Extremes. Computational Statistics and Data Analysis, 199, 108025. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.csda.2024.108025
  • Murphy-Barltrop, C. J. R., Majumder, R., & Richards, J. (2024). Deep Learning of Multivariate Extremes via a Geometric Representation. Retrieved from https://arxiv.org/abs/2406.19936
  • Murphy-Barltrop, C. J. R., Mackay, E., & Jonathan, P. (2024). Inference for bivariate extremes via a semi-parametric angular-radial model. Extremes : statistical theory and applications in science, engineering and economics. Springer Science + Business Media, Dordrecht.
  • Natarajan, Y., K. R., S. P., Wadhwa, G., Choi, Y., Chen, Z., Lee, D.-E., & Mi, Y. (2024). Enhancing Building Energy Efficiency with IoT-Driven Hybrid Deep Learning Models for Accurate Energy Consumption Prediction. Sustainability, 16(5). Retrieved from https://www.mdpi.com/2071-1050/16/5/1925
  • Naumann, L. F., Irmai, J., Zhao, S., & Andres, B. (2024). Box Facets and Cut Facets of Lifted Multicut Polytopes.
  • Nazeer, K. K., Schöne, M., Mukherji, R., Vogginger, B., Mayr, C., Kappel, D., & Subramoney, A. (2024). Language Modeling on a SpiNNaker 2 Neuromorphic Chip. Retrieved from https://arxiv.org/abs/2312.09084
  • Nguyen Anh, K., & Ulbricht, M. (2024). Preferred reasoning in ABA by cycle-breaking. In Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence. Jeju, South Korea: International Joint Conferences on Artificial Intelligence Organization.
  • Nguyen, N. T., Franczyk, B., Ludwig, A., Núñez, M., Treur, J., Vossen, G., & Kozierkiewicz, A. (2024). Advances in Computational Collective Intelligence: 16th International Conference, ICCCI 2024, Leipzig, Germany, September 9-11, 2024, Proceedings, Part II (Vol. 2166). Springer Nature.
  • Nguyen, T.-P., Razniewski, S., & Weikum, G. (2024). Cultural Commonsense Knowledge for Intercultural Dialogues. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, CIKM ’24 (pp. 1774–1784). Boise, ID, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3627673.3679768
  • Niarakis, A., Laubenbacher, R., An, G., Ilan, Y., Fisher, J., Flobak, Åsmund, Reiche, K., et al. (2024). Immune digital twins for complex human pathologies: applications, limitations, and challenges. npj Systems Biology and Applications, 10(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1038/s41540-024-00450-5
  • Niemier, M., Enciso, Z., Sharifi, M. M., Hu, X. S., O’Connor, I., Graening, A., Sharma, R., et al. (2024). Smoothing Disruption Across the Stack: Tales of Memory, Heterogeneity, and Compilers. In Proceedings of the 2024 Design, Automation and Test in Europe Conference (DATE), DATE’24 (pp. 1–10). Valencia, Spain: IEEE. Retrieved from https://ieeexplore.ieee.org/document/10546772
  • Nitsche, A.-M., Franczyk, B., Schumann, C.-A., & Reuther, K. (2024). A Decade of Artificial Intelligence for Supply Chain Collaboration: Past, Present, and Future Research Agenda. 17, 17 (5th ed.). DE: Bundesvereinigung Logistik (BVL) e.V. Retrieved from https://doi.org/10.23773/2024_5
  • Nixon, M. P., McGovern, K. C., Letourneau, J., David, L. A., Lazar, N. A., Mukherjee, S., & Silverman, J. D. (2024). Scale Reliant Inference. Retrieved from https://arxiv.org/abs/2201.03616
  • Novitasari, M. C., Quaas, J., & Rodrigues, M. (2024). ALAS: Active Learning for Autoconversion Rates Prediction from Satellite Data, 3358–3366. PMLR.
  • Novitasari, M. C., Quaas, J., & Rodrigues, M. R. D. (2024). Cloudy with a chance of precision: satellite’s autoconversion rates forecasting powered by machine learning. Environmental Data Science, 3. Cambridge University Press (CUP). Retrieved from http://dx.doi.org/10.1017/eds.2024.24
  • Novitasari, M. C., Quaas, J., & Rodrigues, M. R. (2024). Cloudy with a chance of precision: satellite’s autoconversion rates forecasting powered by machine learning. Environmental Data Science, 3, e23. Cambridge University Press.
  • Nsonga, B., Berres, A., Jeffers, R., Clark, C., Hagen, H., & Scheuermann, G. (2024). Extreme Weather and the Power Grid: A Case Study of Winter Storm Uri. In 2024 IEEE Workshop on Energy Data Visualization (EnergyVis) (pp. 34–39).
  • Obraczka, D., & Rahm, E. (2024). Comparing Symbolic and Embedding-Based Approaches for Relational Blocking. In M. Alam, M. Rospocher, M. van Erp, L. Hollink, & G. A. Gesese (Eds.), Knowledge Engineering and Knowledge Management - 24th International Conference, EKAW 2024, Amsterdam, The Netherlands, November 26-28, 2024, Proceedings, Lecture Notes in Computer Science (Vol. 15370, pp. 155–173). Springer. Retrieved from https://doi.org/10.1007/978-3-031-77792-9_10
  • Oeser, A., Grieb, N., Gaebel, J., Franke, S., Kubasch, A. S., Merz, M., Platzbecker, U., et al. (2024). Künstliche Intelligenz in der Entscheidungsunterstützung und medikamentösen Tumortherapie. Die Onkologie, 30(5), 380–387. Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1007/s00761-024-01487-1
  • Okhrin, O., & Ristig, A. (2024). Penalized estimation of hierarchical Archimedean copula. J. Multivar. Anal., 201(C). USA: Academic Press, Inc. Retrieved from https://doi.org/10.1016/j.jmva.2023.105274
  • Olcese, G., Bates, P. D., Neal, J. C., Sampson, C. C., Wing, O. E. J., Quinn, N., Murphy-Barltrop, C. J. R., et al. (2024). Developing a Fluvial and Pluvial Stochastic Flood Model of Southeast Asia. Water Resources Research, 60 (2024)(6). Blackwell.
  • Oyshi, M. T., Schober, D., Burkhardt, J.-M., Maleska, V., Auguszt, T., Langhans, L., Fuchs, R. K., et al. (2024). ExtremeWeatherVis: Visualizing Extreme Weather Events for Multi-City in Virtual Reality to Support Decision Making. In S. Dutta, K. Feige, K. Rink, & B. Nsonga (Eds.), Workshop on Visualisation in Environmental Sciences (EnvirVis). The Eurographics Association.
  • Ozerova, I., Fallmann, J., Mörl, M., Bernt, M., Prohaska, S. J., & Stadler, P. F. (2024). Aberrant Mitochondrial tRNA Genes Appear Frequently in Animal Evolution. (S. Fernandez-Valverde, Ed.)Genome Biology and Evolution, 16(11). Oxford University Press (OUP). Retrieved from http://dx.doi.org/10.1093/gbe/evae232
  • Pahlke, J., & Sbalzarini, I. (2024). Proven Distributed Memory Parallelization of Particle Methods. ACM Trans. Parallel Comput.. New York, NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3696189
  • Paolini, L., Vahdati, S., Di Iorio, A., Wardenga, R., Heibi, I., & Peroni, S. (2024). "Why do you cite?" An investigation on Citation Intents and Decision-Making Classification Processes. Zenodo. Retrieved from https://zenodo.org/doi/10.5281/zenodo.11841798
  • Parian-Scherb, M., Uhrig, P., Rossetto, L., Dupont, S., & Schuldt, H. (2024). Gesture retrieval and its application to the study of multimodal communication. Springer. Retrieved from https://www.zora.uzh.ch/id/eprint/234989
  • Parry, A., Fröbe, M., MacAvaney, S., Potthast, M., & Hagen, M. (2024). Analyzing Adversarial Attacks on Sequence-to-Sequence Relevance Models. Retrieved from https://arxiv.org/abs/2403.07654
  • Pasche, O. C., Wider, J., Zhang, Z., Zscheischler, J., & Engelke, S. (2024). Validating Deep-Learning Weather Forecast Models on Recent High-Impact Extreme Events. arXiv preprint arXiv:2404.17652.
  • Paulig, N., & Okhrin, O. (2024). Robust path following on rivers using bootstrapped reinforcement learning. Ocean engineering, 298. Elsevier Science B.V.
  • Paulig, N., & Okhrin, O. (2024). An open-source framework for data-driven trajectory extraction from AIS data—The α-method. Ocean engineering, 312. Elsevier Science B.V.
  • Pellicer-Valero, O. J., Fernández-Torres, M.- Ángel, Ji, C., Mahecha, M. D., & Camps-Valls, G. (2024). Explainable Earth Surface Forecasting under Extreme Events. arXiv. Retrieved from https://arxiv.org/abs/2410.01770
  • Peter, A. S., Hoffmann, D. S., Klier, J., Lange, C. M., Möller, J., Most, V., Wüst, C. K., et al. (2024). Strategies of rational and structure-driven vaccine design for Arenaviruses. Infection, Genetics and Evolution, 105626. Elsevier.
  • Peters, J., Neumann, A., Jaeger, M., Gienapp, L., & Umlauft, J. (2024). ml4xcube: Machine Learning Toolkits for Earth System Data Cubes. EarthArXiv.
  • Peters, J., Roth, F., & Umaluft, J. (2024). Deep Embedded Clustering of a Cryo-Data-Cube. Copernicus Meetings.
  • Phan, T.-L., Weinbauer, K., Gärtner, T., Merkle, D., Andersen, J. L., Fagerberg, R., & Stadler, P. F. (2024). Reaction rebalancing: a novel approach to curating reaction databases. Journal of Cheminformatics, 16(1), 82. Springer.
  • Phan, T.-L., Weinbauer, K., Gonzalez Laffitte, M. E., Pan, Y., Merkle, D., Andersen, J. L., Fagerberg, R., et al. (2024). SynTemp: Efficient Extraction of Graph-Based Reaction Rules from Large-Scale Reaction Databases. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.26434/chemrxiv-2024-tkm36
  • Philipp, M., Moth, C. W., Ristic, N., Tiemann, J. K. S., Seufert, F., Panfilova, A., Meiler, J., et al. (2024). MutationExplorer: a webserver for mutation of proteins and 3D visualization of energetic impacts. Nucleic Acids Research, gkae301. Oxford University Press.
  • Pliushcheuskaya, P., Kesh, S., Kaufmann, E., Wucherpfennig, S., Schwede, F., Künze, G., & Nache, V. (2024). Similar Binding Modes of cGMP Analogues Limit Selectivity in Modulating Retinal CNG Channels via the Cyclic Nucleotide-Binding Domain. ACS Chemical Neuroscience, 15(8), 1652–1668. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.1021/acschemneuro.3c00665
  • Pollack, J., Köpcke, H., & Rahm, E. (2024). Intermediate Fusion for Multimodal Product Matching.
  • Poray, J., Franczyk, B., & Heller, T. (2024). Model-Agnostic Machine Learning Model Updating – A Case Study on a real-world Application. In Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS), FedCSIS 2024 (Vol. 39, pp. 157–167). IEEE. Retrieved from http://dx.doi.org/10.15439/2024F4426
  • Pott, J., Kheirkhah, A., Gadin, J. R., Kleber, M. E., Delgado, G. E., Kirsten, H., Forer, L., et al. (2024). Sex and statin-related genetic associations at the PCSK9 gene locus: results of genome-wide association meta-analysis. Biology of sex Differences, 15(1), 26. Springer.
  • Presberger, J., Keshara, R., Stein, D., Kim, Y. H., Grapin-Botton, A., & Andres, B. (2024). Correlation Clustering of Organoid Images.
  • Rade, M., Grieb, N., Weiss, R., Sia, J., Fischer, L., Born, P., Boldt, A., et al. (2024). Single-cell multiomic dissection of response and resistance to chimeric antigen receptor T cells against BCMA in relapsed multiple myeloma. Nature Cancer, 5(9), 1318–1333. Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1038/s43018-024-00763-8
  • Rade, M., Kreuz, M., Borkowetz, A., Sommer, U., Blumert, C., Füssel, S., Bertram, C., et al. (2024). A reliable transcriptomic risk-score applicable to formalin-fixed paraffin-embedded biopsies improves outcome prediction in localized prostate cancer. Molecular Medicine, 30(1). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1186/s10020-024-00789-9
  • Raith, F., Scheuermann, G., & Heine, C. (2024). Topological Simplifcation of Jacobi Sets for Piecewise-Linear Bivariate 2D Scalar Fields with Adjustment of the Underlying Data. Retrieved from https://arxiv.org/abs/2408.08097
  • Ram’irez-Rafael, J. A., Korchmaros, A., Aviña-Padilla, K., López Sánchez, A., España-Tinajero, A. A., Hellmuth, M., Stadler, P. F., et al. (2024). REvolutionH-tl: R econstruction of Evolution ary H istories t oo l. In RECOMB International Workshop on Comparative Genomics (pp. 89–109). Springer.
  • Rapberger, A., & Ulbricht, M. (2024). Repairing Assumption-Based Argumentation Frameworks. In Proc. KR.
  • Rapberger, A., Ulbricht, M., & Toni, F. (2024). On the Correspondence of Non-flat Assumption-based Argumentation and Logic Programming with Negation as Failure in the Head. Retrieved from https://arxiv.org/abs/2405.09415
  • Reinhardt, F., Kaiser, A., Prömel, S., & Stadler, P. F. (2024). Evolution of neuropeptide Y/RFamide-like receptors in nematodes. Heliyon, 10(14), e34473. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.heliyon.2024.e34473
  • Reinhardt, M., Mora, K., Brandt, G., Harish, T. M., Montero, D., Ji, C., Kattenborn, T., et al. (2024). DeepFeatures: Remote sensing beyond spectral indices. EGU General Assembly Conference Abstracts, 18852.
  • Reinke, A., Tizabi, M. D., Baumgartner, M., Eisenmann, M., Heckmann-Nötzel, D., Kavur, A. E., Rädsch, T., et al. (2024). Understanding metric-related pitfalls in image analysis validation. Nat. Methods, 21(2), 182–194. Springer Science and Business Media LLC.
  • Reiter, N.-D., Wahl, J., Gerhardus, A., & Runge, J. (2024). Causal Inference on Process Graphs, Part II: Causal Structure and Effect Identification. Retrieved from https://arxiv.org/abs/2406.17422
  • Ricard, L., Falasca, F., Runge, J., & Nenes, A. (2024). network-based constraint to evaluate climate sensitivity. Nature Communications, 15(1), 6942. Retrieved from https://doi.org/10.1038/s41467-024-50813-z
  • Richter, J., Dammann, M. P., Kluge, M., Saske, B., Arndt, S., Hornig, A., Paetzold-Byhain, K., et al. (2024). Digitalized composite material and product development – strategies and methods for multiscale experimental-numerical validation processes using PLM and MBSE approaches. In ECCM21 - Proceedings of the 21st European Conference on Composite Materials (Vol. 3, pp. 1576–1583). European Society for Composite Materials (ESCM). Retrieved from https://eccm21.org/
  • Rocha, U., Coelho Kasmanas, J., Kallies, R., Saraiva, J. P., Toscan, R. B., Štefanivc, P., Bicalho, M. F., et al. (2024). MuDoGeR: Multi-Domain Genome recovery from metagenomes made easy. Molecular Ecology Resources, 24(2), e13904. Wiley Online Library.
  • Rodriguez-Fernandez, A. E., Schäpermeier, L., Hernández, C., Kerschke, P., Trautmann, H., & Schütze, O. (2024). Finding ϵ-Locally Optimal Solutions for Multi-Objective Multimodal Optimization. IEEE Transactions on Evolutionary Computation, 1–1.
  • Rogulsky, S., Popovic, N., & Färber, M. (2024). The Effects of Hallucinations in Synthetic Training Data for Relation Extraction. Retrieved from https://arxiv.org/abs/2410.08393
  • Rost, C., Tommasini, R., Bonifati, A., Della Valle, E., Rahm, E., Hare, K. W., Plantikow, S., et al. (2024). Seraph: Continuous Queries on Property Graph Streams. In EDBT (pp. 234–247).
  • Roth, J., Mora, K., Al-Halbouni, D., Richter, R., Kattenborn, T., Wieneke, S. J., Bastos, A., et al. (2024). How trees sway and what it tells us about their overall vitality. Copernicus Meetings.
  • Rouatbi, R., Suarez, J. E., & Sbalzarini, I. F. (2024). Push-Forward Signed Distance Functions enable interpretable and robust continuous shape quantification. Retrieved from https://arxiv.org/abs/2410.21004
  • Ruckdeschel, M., Baumann, R., & Wiedemann, G. (2024). Argument Mining of Attack and Support Patterns in Dialogical Conversations with Sequential Pattern Mining. In Conference on Advances in Robust Argumentation Machines (pp. 39–56). Springer.
  • Russell, B., Beyer, K., Lawlor, A., Roobol, M. J., Venderbos, L. D., Remmers, S., Briers, E., et al. (2024). Survivorship Data in Prostate Cancer: Where Are We and Where Do We Need To Be?. European Urology Open Science, 59, 27–29. Elsevier BV. Retrieved from http://dx.doi.org/10.1016/j.euros.2023.11.004
  • Sadeghi, M., Pöttgen, D., Ebel, P., & Vogelsang, A. (2024). Explaining the Unexplainable: The Impact of Misleading Explanations on Trust in Unreliable Predictions for Hardly Assessable Tasks. In Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, UMAP ’24 (pp. 36–46). Cagliari, Italy: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3627043.3659573
  • Salybekov, A. A., Wolfien, M., Hahn, W., Hidaka, S., & Kobayashi, S. (2024). Artificial Intelligence Reporting Guidelines’ Adherence in Nephrology for Improved Research and Clinical Outcomes. Biomedicines, 12(3). MDPI, Basel.
  • Salybekov, A. A., Wolfien, M., Hahn, W., Hidaka, S., & Kobayashi, S. (2024). Artificial Intelligence Reporting Guidelines’ Adherence in Nephrology for Improved Research and Clinical Outcomes. Biomedicines, 12(3), 606. MDPI AG. Retrieved from http://dx.doi.org/10.3390/biomedicines12030606
  • Sambale, P., Hartmann, T., Middelstaedt, B., & Altmann, M. (2024). Towards a Consulting Guideline for Capacity Building in COIL Modules. In T. Köhler, E. Schoop, N. Kahnwald, & R. Sonntag (Eds.), Communities in New Media. Inclusive digital: Forming Community in an Open Way Self-determined Participation in the Digital Transformation (pp. 101–109). Germany: TUDpress/Thelem Universitätsverlag. Retrieved from https://tu-dresden.de/codip/ergebnisse-transfer/veranstaltungen/geneme
  • Sanabria, M., Hirsch, J., Joubert, P. M., & Poetsch, A. R. (2024). DNA language model GROVER learns sequence context in the human genome. Nature Machine Intelligence, 6(8), 911–923. Retrieved from https://doi.org/10.1038/s42256-024-00872-0
  • Sanabria, M., Hirsch, J., & Poetsch, A. R. (2024). Distinguishing word identity and sequence context in DNA language models. BMC Bioinformatics, 25(1), 301. Retrieved from https://doi.org/10.1186/s12859-024-05869-5
  • Santiago Arguello, A., Scholz, G. E., & Stadler, P. F. (2024). Core Potentials: The Consensus Segmentation Conjecture. Mathematics in Computer Science, 18(4). Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.1007/s11786-024-00593-y
  • Satkowski, M. (2024, February 6). Understanding Immersive Environments for Visual Data Analysis. QUCOSA.
  • Satkowski, M. (2024, February). Understanding Immersive Environments for Visual Data Analysis (Marc Satkowski). Qucosa - Technische Universität Dresden, Dresden. Retrieved from https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-889954
  • Schäpermeier, L., & Kerschke, P. (2024). Reinvestigating the R2 Indicator: Achieving Pareto Compliance by Integration. Retrieved from https://arxiv.org/abs/2407.01504
  • Schäpermeier, L., & Kerschke, P. (2024). Reinvestigating the R2 Indicator: Achieving Pareto Compliance by Integration. In M. Affenzeller, S. M. Winkler, A. V. Kononova, T. Bäck, H. Trautmann, T. Tuv sar, & P. Machado (Eds.), Parallel Problem Solving from Nature – PPSN XVIII, Lecture Notes in Computer Science (pp. 202–216). Springer, Berlin [u. a.].
  • Schebera, J., Zeckzer, D., & Wiegreffe, D. (2024). A layout framework for genome-wide multiple sequence alignment graphs. Frontiers in Bioinformatics, 4. Frontiers Media SA. Retrieved from http://dx.doi.org/10.3389/fbinf.2024.1358374
  • Schlatt, F., Fröbe, M., Scells, H., Zhuang, S., Koopman, B., Zuccon, G., Stein, B., et al. (2024). Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders. Retrieved from https://arxiv.org/abs/2404.06912
  • Schlatt, F., Fröbe, M., Scells, H., Zhuang, S., Koopman, B., Zuccon, G., Stein, B., et al. (2024). A systematic investigation of distilling large language models into cross-encoders for passage re-ranking. arXiv.
  • Schmidt, B. J., Hartmann, T., & Stadler, P. F. (2024). Sorting signed permutations by tandem duplication random loss and inverse tandem duplication random loss. Advances in Applied Mathematics, 161, 102757. Elsevier.
  • Schmidt, S., Zelch, I., Bevendorff, J., Stein, B., Hagen, M., & Potthast, M. (2024). Detecting Generated Native Ads in Conversational Search. In Companion Proceedings of the ACM on Web Conference 2024, WWW ’24 (Vol. 5, pp. 722–725). ACM. Retrieved from http://dx.doi.org/10.1145/3589335.3651489
  • Schneider, M. (2024). Distributed, Privacy-Aware Location Data Aggregation. In . Retrieved from https://api.semanticscholar.org/CorpusID:272655378
  • Schöne, M., Sushma, N. M., Zhuge, J., Mayr, C., Subramoney, A., & Kappel, D. (2024). Scalable Event-by-event Processing of Neuromorphic Sensory Signals With Deep State-Space Models.
  • Schröder, C., & Heyer, G. (2024). Self-Training for Sample-Efficient Active Learning for Text Classification with Pre-Trained Language Models. In Y. Al-Onaizan, M. Bansal, & Y.-N. Chen (Eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (pp. 11987–12004). Miami, Florida, USA: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2024.emnlp-main.669
  • Schultz, C., Bernhart, S., Gnauck, J., Valdivia, D., Stubenvoll, A., Betat, H., Moerl, M., et al. (2024). Melanoma development: linking tRNA composition to mRNA expression. In EXPERIMENTAL DERMATOLOGY (Vol. 33). WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ USA.
  • Schultz, K., Bej, S., Hahn, W., Wolfien, M., Srivastava, P., & Wolkenhauer, O. (2024). ConvGeN: A convex space learning approach for deep-generative oversampling and imbalanced classification of small tabular datasets. Pattern Recognition, 147, 110138. Retrieved from https://www.sciencedirect.com/science/article/pii/S003132032300835X
  • Schulz, L., Vollmer, J., Mahecha, M. D., & Mora, K. (2024). Nonlinear spectral analysis extracts harmonics from land-atmosphere fluxes. Retrieved from https://arxiv.org/abs/2407.19237
  • Seemann, C. R., Stadler, P. F., & Hellmuth, M. (2024). Nesting of Touching Polygons. arXiv preprint arXiv:2409.13040.
  • Seidemann, S., Salomon, F., Hoffmann, K., Kurth, T., Sbalzarini, I. F., Haase, R., & Ader, M. (2024). Automated Quantification of Photoreceptor Outer Segments in Developing and Degenerating Retinas on Microscopic Images across Scales. Investigative Ophthalmology & Visual Science, 65(7), 5878–5878. The Association for Research in Vision and Ophthalmology.
  • Seidemann, S., Salomon, F., Hoffmann, K. B., Kurth, T., Sbalzarini, I. F., Haase, R., & Ader, M. (2024). Automated quantification of photoreceptor outer segments in developing and degenerating retinas on microscopy images across scales. FRONTIERS IN MOLECULAR NEUROSCIENCE, 17 (2024). Frontiers Media S.A.
  • Seiler, M. V., Kerschke, P., & Trautmann, H. (2024). Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single- and Multi-Objective Continuous Optimization Problems. Retrieved from https://arxiv.org/abs/2401.01192
  • Seufert, F., Pérez-Hernández, G., Pándy-Szekeres, G., Guixà-González, R., Langenhan, T., Gloriam, D. E., & Hildebrand, P. W. (2024). Generic residue numbering of the GAIN domain of adhesion GPCRs. Springer Science and Business Media LLC. Retrieved from http://dx.doi.org/10.21203/rs.3.rs-4761600/v1
  • Shamsara, E., Yamakou, M. E., Atay, F. M., & Jost, J. (2024). Dynamics of neural fields with exponential temporal kernel. Theory in Biosciences, 143(2), 107–122. Retrieved from https://doi.org/10.1007/s12064-024-00414-7
  • Shanavas, A. V., Changat, M., Hellmuth, M., & Stadler, P. F. (2024). Unique least common ancestors and clusters in directed acyclic graphs. In Conference on Algorithms and Discrete Applied Mathematics (pp. 148–161). Springer.
  • Shanavas, A. V., Changat, M., Hellmuth, M., & Stadler, P. F. (2024). Clusters and Unique Least Common Ancestors in Directed Acyclic Graphs. Research Square Platform LLC. Retrieved from http://dx.doi.org/10.21203/rs.3.rs-3997739/v1
  • Sherpa, L., Attar Khorasani, S., Sankar, R., Müller-Pfefferkorn, R., & Ghiasvand, S. (2024). KEENsight: Cloud based Collaborative Environment for Streamlining Machine Learning Development. In The Fifteenth International Conference on Information, Intelligence, Systems and Applications. Crete, Greece.
  • Sidl, L., Faissner, M., Uhlir, M., Velandia-Huerto, C. A., Waldl, M., Yao, H.-T., Hofacker, I. L., et al. (2024, October). A Relation between Natural Selection and Computational Complexity. Retrieved from https://hal.science/hal-04715891
  • Silva, C., Roldan, E., & Toala-Enriquez, R. (2024). Eden model for Pentagons. Retrieved from https://arxiv.org/abs/2403.12772
  • Simon, S., Mailach, A., Dorn, J., & Siegmund, N. (2024). A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation. Retrieved from https://arxiv.org/abs/2410.08801
  • Sivaraj, S., Zscheischler, J., Buzan, J. R., Martius, O., Brönnimann, S., & Vicedo-Cabrera, A. M. (2024). Heat, humidity and health impacts: how causal diagrams can help tell the complex story. Environmental Research Letters, 19(7), 074069. IOP Publishing. Retrieved from http://dx.doi.org/10.1088/1748-9326/ad5a25
  • Skoczylas, A., Franczyk, B., Gryncewicz, W., & Zygala, R. (2024). Decision Support in Production Environment Using Artificial Intelligence. In (pp. 50–61).
  • Sodoge, J., Kuhlicke, C., Mahecha, M. D., & de Brito, M. M. (2024). Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany. Natural Hazards and Earth System Sciences, 24(5), 1757–1777. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/nhess-24-1757-2024
  • Söchting, M., Mahecha, M. D., Montero, D., & Scheuermann, G. (2024). Lexcube: Interactive Visualization of Large Earth System Data Cubes. IEEE Computer Graphics and Applications, 44(1), 25–37. Institute of Electrical and Electronics Engineers (IEEE). Retrieved from http://dx.doi.org/10.1109/MCG.2023.3321989
  • Soltani, S., Ferlian, O., Eisenhauer, N., Feilhauer, H., & Kattenborn, T. (2024). From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery. Biogeosciences, 21(11), 2909–2935. Copernicus GmbH. Retrieved from http://dx.doi.org/10.5194/bg-21-2909-2024
  • Soltwedel, J. R., & Haase, R. (2024). Challenges and opportunities for bioimage analysis core-facilities. Journal of Microscopy, 294(3), 338–349.
  • Sorensen, L., Humenick, A., Poon, S. S., Han, M. N., Mahdavian, N. S., Rowe, M. C., Hamnett, R., et al. (2024). Gut Analysis Toolbox--automating quantitative analysis of enteric neurons. Journal of Cell Science, 137(20). The Company of Biologists.
  • Sorensen, L., Humenick, A., Poon, S. S., Han, M. N., Mahdavian, N. S., Rowe, M. C., Hamnett, R., et al. (2024). Gut Analysis Toolbox--automating quantitative analysis of enteric neurons. Journal of Cell Science, 137(20). The Company of Biologists.
  • Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A., Abid, A., Fisch, A., Brown, A. R., et al. (2022). Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models. arXiv.
  • Stein, D., & Andres, B. (2024). Partial Optimality in the Linear Ordering Problem. In Forty-first International Conference on Machine Learning. Retrieved from https://openreview.net/forum?id=vYYIuJDTHq
  • Steinacker, M., Kheifetz, Y., & Scholz, M. (2024). Predicting chemotherapy-induced thrombotoxicity by NARX neural networks and transfer learning. Journal of Cancer Research and Clinical Oncology, 150(10), 457. Retrieved from https://doi.org/10.1007/s00432-024-05985-y
  • Stoll, K., von Braun, M., Kürsten, D., Welle, F., Wawrzyniak, M., Groos, A., Klingbeil, J., et al. (2024). Prediction of functional therapeutic response to thrombectomy in acute stroke using neural networks. Clin. Neurophysiol., 159, e5. Elsevier BV.
  • Striegl, J., Fekih, F., Weber, G., & Loitsch, C. (2024). Chatbot-Based Mood and Activity Journaling for Resource-Oriented CBT Support of Students. In V. G. Duffy (Ed.), Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management - 15th International Conference, DHM 2024, Held as Part of the 26th HCI International Conference, HCII 2024, Proceedings, Lecture Notes in Computer Science (pp. 177–188). Springer, Berlin [u. a.].
  • Striegl, J., Loitsch, C., Etzold, E. F., & Weber, G. (2024). Mapable: Accessible Web-Based Indoor Maps for People with Diverse Interaction and Information Needs. In M. Antona & C. Stephanidis (Eds.), Universal Access in Human-Computer Interaction - 18th International Conference, UAHCI 2024, Held as Part of the 26th HCI International Conference, HCII 2024, Proceedings (pp. 100–111).
  • Striegl, J., Richter, J. W., Grossmann, L., Bråstad, B., Gotthardt, M., Rück, C., Wallert, J., et al. (2024). Deep learning-based dimensional emotion recognition for conversational agent-based cognitive behavioral therapy. PeerJ Computer Science, 10, e2104. PeerJ. Retrieved from http://dx.doi.org/10.7717/peerj-cs.2104
  • Striegl, J., Rottmann, S., & Loitsch, C. (2024). Effectiveness and Acceptance of Conversational Agent-based Psychotherapy for Depression and Anxiety Treatment: Methodological Literature Review. In .
  • Sukthanker, R. S., Staffler, B., Hutter, F., & Klein, A. (2024). Large Language Model Compression with Neural Architecture Search. Retrieved from https://arxiv.org/abs/2410.06479
  • Sukthanker, R. S., Zela, A., Staffler, B., Klein, A., Purucker, L., Franke, J. K. H., & Hutter, F. (2024). HW-GPT-Bench: Hardware-Aware Architecture Benchmark for Language Models. Retrieved from https://arxiv.org/abs/2405.10299
  • Susanti, Y., & Färber, M. (2024). Knowledge Graph Structure as Prompt: Improving Small Language Models Capabilities for Knowledge-based Causal Discovery. Retrieved from https://arxiv.org/abs/2407.18752
  • Swaminathan, A., Hannemann, A., Ünal, A. B., Pfeifer, N., & Akgün, M. (2024). PP-GWAS: Privacy Preserving Multi-Site Genome-wide Association Studies. Retrieved from https://arxiv.org/abs/2410.08122
  • Syed, S., Al Khatib, K., & Potthast, M. (2024). TL;DR Progress: Multi-faceted Literature Exploration in Text Summarization. In N. Aletras & O. De Clercq (Eds.), Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations (pp. 195–206). St. Julians, Malta: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2024.eacl-demo.21
  • Taghikhah, M., Kumar, N., v Segvi’c, S. sa, Eslami, A., & Gumhold, S. (2024). Quantile-based maximum likelihood training for outlier detection. Proc. Conf. AAAI Artif. Intell., 38(19), 21610–21618. Association for the Advancement of Artificial Intelligence (AAAI).
  • Tang, Y., Moretti, R., & Meiler, J. (2024). Recent Advances in Automated Structure-Based De Novo Drug Design. Journal of Chemical Information and Modeling, 64(6), 1794–1805. American Chemical Society (ACS). Retrieved from http://dx.doi.org/10.1021/acs.jcim.4c00247
funded by:
Gefördert vom Bundesministerium für Bildung und Forschung.
Gefördert vom Freistaat Sachsen.