Earth and Environmental Sciences

The focus area Earth and Environmental Sciences at ScaDS.AI Dresden/Leipzig uses Artificial Intelligence (AI) and big data analytics to describe a multitude of natural phenomena and related effects, including for example the impacts of natural hazards and climate change risks (e.g., extreme weather events or destructive geomorphological processes) or biodiversity loss. AI is becoming increasingly important in this context as most parts of the Earth system are continuously monitored by sensors and AI is able to cope with both the volume of data and the heterogeneous data characteristics.

Our applications range from local to global scale and address dynamics of the atmosphere, the oceans, terrestrial regions including the cryosphere and even in-depth processes within the upper crust of the Earth. Air, water, soils, ice, rocks and biodiversity are constantly monitored with dedicated local monitoring systems and satellites. Furthermore, citizen science projects collect data with smartphone apps.

All in all, studying the Earth system and its changes has become a data-intensive research problem. At ScaDS.AI Dresden/Leipzig, we work on the methodological challenges arising in this broad context from different perspectives and consider multiple environmental facets.

We are an interdisciplinary team of domain scientists (geophysics/seismology, geomorphology, physics) and computer scientists and enjoy fruitful discussions and the exchange from multiple perspectives to address today’s pressing questions on the dynamic Earth.

Climate Research

One of the most pressing questions of our time is the prediction of the future climate and the associated risks. Various AI avenues are being explored to harness the potential of Deep Learning for better projections in this context. For instance, neural networks – the backbone of many AI methods – can now be informed by physical principles (Physics Informed Neuronal Networks). This leads to novel types of models that can efficiently represent uncertain processes in complex models. A prominent example is the question of how to represent clouds – still a key uncertainty in climate models. Developments of this kind will also be a key contribution to the international development of Digital Twins of the Earth (e.g. EU Destination Earth).

Terrestrial Ecosystems

For different ecosystems such as forests, grasslands, croplands or even high mountainous regions and glaciers we focus on a branch of AI that incorporates explainability. This means that every prediction we make with AI shall be accompanied by some form of attribution or explanation.

For instance, if we aim to predict crop failure, forest dieback, wildfires, flood damage, landslides, debris flows or glacial motion we are also interested in the likely causes of these events. This is often less trivial than expected due to a combination of driving factors. Combining traditional process-based modeling approaches with innovative AI and Big Data analytics will hopefully lead to improved ecosystem management and adaptation strategies at regional to local scales.

Research Areas:

Portrait of Dr. Josefine Umlauft

Dr. Josefine Umlauft

Group Leader

Leipzig University

Principal Investigators:

Portrait of Prof. Dr. sc. ETH Miguel D. Mahecha

Prof. Dr. sc. ETH Miguel D. Mahecha

Leading Principal Investigator

Leipzig University

Find out more about our research in the field of Applied AI and Big Data.